This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A263608 #21 May 20 2024 10:16:37 %S A263608 0,1,11,121,10201,11111,112211,122221,1002001,1120211,11022011, %T A263608 100020001,101212101,122111221,1012112101,1100220011,10000200001, %U A263608 10111011101,110002200011,111221122111,1000002000001,1001221221001,1012200022101,1101202021011,1221221221221,10101111110101 %N A263608 Palindromes which are base-3 representations of squares. %H A263608 Robert Israel, <a href="/A263608/b263608.txt">Table of n, a(n) for n = 1..143</a> %H A263608 G. J. Simmons, <a href="/A002778/a002778.pdf">On palindromic squares of non-palindromic numbers</a>, J. Rec. Math., 5 (No. 1, 1972), 11-19. [Annotated scanned copy] %p A263608 rev3:= proc(n) local L,i; L:= convert(n,base,3); add(L[-i]*3^(i-1),i=1..nops(L)) end proc: %p A263608 c3:= proc(n) local L,i; L:= convert(n,base,3); add(L[i]*10^(i-1),i=1..nops(L)) end proc: %p A263608 R:= 0,1: count:= 2: %p A263608 for d from 2 while count < 100 do %p A263608 if d::odd then %p A263608 V:= select(issqr, [seq(seq(a*3^((d+1)/2) + b*3^((d-1)/2)+rev3(a),b=0..2),a=3^((d-3)/2) .. 3^((d-1)/2)-1)]) %p A263608 else %p A263608 V:= select(issqr, [seq(a*3^(d/2) + rev3(a), a=3^(d/2-1) .. 3^(d/2)-1)]); %p A263608 fi; %p A263608 count:= count+nops(V); %p A263608 R:= R, op(map(c3,V)); %p A263608 od: %p A263608 R; # _Robert Israel_, May 19 2024 %Y A263608 Cf. A002778, A003166, A029984, A262607, A029985. %Y A263608 Intersection of A001738 and A118594. %K A263608 nonn,base %O A263608 1,3 %A A263608 _N. J. A. Sloane_, Oct 22 2015 %E A263608 Name edited by _Robert Israel_, May 19 2024