cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263614 a(2n) = A000125(n), a(2n+1) = 2*a(2n).

Original entry on oeis.org

0, 0, 1, 2, 2, 4, 4, 8, 8, 16, 15, 30, 26, 52, 42, 84, 64, 128, 93, 186, 130, 260, 176, 352, 232, 464, 299, 598, 378, 756, 470, 940, 576, 1152, 697, 1394, 834, 1668, 988, 1976, 1160, 2320, 1351, 2702, 1562, 3124, 1794, 3588, 2048, 4096, 2325, 4650, 2626, 5252, 2952, 5904, 3304, 6608, 3683, 7366
Offset: 0

Views

Author

N. J. A. Sloane, Oct 23 2015

Keywords

Comments

For n >= 2, number of palindromic squares of length n whose decimal digits are 0 or 1 and with 9 or fewer 1's.

Crossrefs

Programs

  • PARI
    a(n) = (-((-1)^n*(-78+62*n-12*n^2+n^3))+3*(-26+42*n-8*n^2+n^3))/96 \\ Colin Barker, Oct 26 2015
    
  • PARI
    concat(vector(2), Vec(x^2*(2*x+1)*(2*x^4-2*x^2+1)/((x-1)^4*(x+1)^4) + O(x^100))) \\ Colin Barker, Oct 26 2015

Formula

From Colin Barker, Oct 26 2015: (Start)
a(n) = (-((-1)^n*(-78+62*n-12*n^2+n^3))+3*(-26+42*n-8*n^2+n^3))/96.
a(n) = 4*a(n-2)-6*a(n-4)+4*a(n-6)-a(n-8) for n>7.
G.f.: x^2*(2*x+1)*(2*x^4-2*x^2+1) / ((x-1)^4*(x+1)^4).
(End)