A263620 Number of nonzero palindromic squares with at most 2n digits.
3, 6, 14, 19, 30, 36, 55, 69, 94, 112, 161, 192, 263, 309, 414, 485, 639, 740, 949, 1081, 1373, 1555
Offset: 1
Links
- G. J. Simmons, Palindromic powers, J. Rec. Math., 3 (No. 2, 1970), 93-98. [Annotated scanned copy] See page 95.
Programs
-
Mathematica
Table[Length[Select[Range[1, Floor[Sqrt[10^(2 n)]]], PalindromeQ[#^2] &]], {n, 6}] (* Robert Price, Apr 26 2019 *)
-
Python
def ispal(n): s = str(n); return s == s[::-1] def a(n): c, k, kk = 0, 1, 1 while kk < 10**(2*n): c, k, kk = c + (ispal(kk)), k+1, kk + 2*k + 1 return c print([a(n) for n in range(1, 8)]) # Michael S. Branicky, Mar 06 2021
Formula
Equals A263619(2n)-1.
Extensions
a(7)-a(10) from Chai Wah Wu, Oct 25 2015
More terms using A263618 from Chai Wah Wu, Jun 14 2024