A263637 Number of length n arrays of permutations of 0..n-1 with each element moved by -2 to 2 places and with no two consecutive increases.
1, 2, 5, 9, 11, 19, 27, 44, 65, 104, 155, 246, 370, 582, 882, 1379, 2100, 3270, 4997, 7758, 11885, 18413, 28258, 43714, 67171, 103801, 159643, 246515, 379373, 585502, 901460, 1390734, 2141907, 3303555, 5089046, 7847557, 12090913, 18642253, 28725828
Offset: 1
Keywords
Examples
Some solutions for n=6: ..2....1....0....0....0....1....0....1....1....1....1....0....0....2....2....2 ..1....0....3....2....3....3....2....0....2....3....2....2....3....0....1....0 ..0....4....1....1....2....0....1....4....0....0....0....1....1....3....0....4 ..4....3....5....5....1....4....4....2....4....5....5....5....4....1....5....1 ..3....2....2....3....5....2....3....5....3....2....3....4....2....5....4....5 ..5....5....4....4....4....5....5....3....5....4....4....3....5....4....3....3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 2 of A263643.
Formula
Empirical: a(n) = 2*a(n-2) + a(n-3) - a(n-5) for n>9.
Empirical g.f.: x*(1 + x - x^2)*(1 + x + 3*x^2 + 2*x^3 - x^5 - x^6) / (1 - 2*x^2 - x^3 + x^5). - Colin Barker, Jan 02 2019