A263638 Number of length n arrays of permutations of 0..n-1 with each element moved by -3 to 3 places and with no two consecutive increases.
1, 2, 5, 17, 41, 75, 156, 340, 738, 1567, 3327, 7136, 15258, 32589, 69621, 148780, 317987, 679467, 1451887, 3102670, 6630039, 14167934, 30275260, 64695775, 138248719, 295425310, 631295545, 1349022959, 2882734510, 6160146104
Offset: 1
Keywords
Examples
Some solutions for n=6 ..2....2....1....2....3....3....0....1....1....3....0....2....1....1....2....1 ..0....3....0....4....1....0....4....3....3....1....4....3....0....4....4....4 ..4....0....5....0....0....5....1....0....2....0....2....0....5....2....1....0 ..1....5....3....3....5....1....5....4....0....4....5....4....2....0....0....3 ..5....1....2....1....2....4....2....2....5....2....1....1....4....5....5....2 ..3....4....4....5....4....2....3....5....4....5....3....5....3....3....3....5
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A263643.
Formula
Empirical: a(n) = 3*a(n-2) +2*a(n-3) +3*a(n-4) +2*a(n-5) -2*a(n-6) -6*a(n-7) +2*a(n-8) -4*a(n-9) -2*a(n-10) +3*a(n-11) -2*a(n-12) +a(n-14) for n>19
Comments