cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263639 Number of length n arrays of permutations of 0..n-1 with each element moved by -4 to 4 places and with no two consecutive increases.

This page as a plain text file.
%I A263639 #4 Oct 22 2015 14:45:52
%S A263639 1,2,5,17,70,226,538,1417,3734,10564,29274,81109,219924,603970,
%T A263639 1654203,4552899,12482279,34293113,93987924,258097242,707931841,
%U A263639 1943681720,5332252281,14636363836,40158264369,110218824475,302439248237
%N A263639 Number of length n arrays of permutations of 0..n-1 with each element moved by -4 to 4 places and with no two consecutive increases.
%C A263639 Column 4 of A263643.
%H A263639 R. H. Hardin, <a href="/A263639/b263639.txt">Table of n, a(n) for n = 1..210</a>
%F A263639 Empirical: a(n) = 4*a(n-2) +4*a(n-3) +8*a(n-4) +14*a(n-5) +25*a(n-6) +11*a(n-7) -33*a(n-8) -116*a(n-9) +83*a(n-10) -207*a(n-11) -28*a(n-12) -212*a(n-13) +65*a(n-14) +51*a(n-15) -189*a(n-16) +21*a(n-17) +106*a(n-18) +428*a(n-19) -114*a(n-20) +589*a(n-21) +7*a(n-22) -244*a(n-23) +89*a(n-24) +273*a(n-25) -111*a(n-26) -557*a(n-27) +393*a(n-28) +42*a(n-29) -246*a(n-30) -a(n-31) +110*a(n-32) +23*a(n-33) -149*a(n-34) +13*a(n-35) +50*a(n-36) -3*a(n-37) -10*a(n-38) -2*a(n-39) +5*a(n-40) -2*a(n-41) -4*a(n-42) +a(n-43) +4*a(n-44) -a(n-46) for n>53
%e A263639 Some solutions for n=6
%e A263639 ..4....1....4....3....1....0....1....3....3....4....3....1....0....4....4....1
%e A263639 ..2....0....3....5....3....5....2....0....2....2....4....5....5....5....5....4
%e A263639 ..0....5....1....2....2....3....0....5....4....5....1....3....1....3....0....0
%e A263639 ..5....4....0....1....4....4....5....1....0....1....2....4....3....0....3....5
%e A263639 ..1....2....5....0....0....2....3....4....5....0....0....0....2....2....2....2
%e A263639 ..3....3....2....4....5....1....4....2....1....3....5....2....4....1....1....3
%Y A263639 Cf. A263643.
%K A263639 nonn
%O A263639 1,2
%A A263639 _R. H. Hardin_, Oct 22 2015