This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A263647 #26 Sep 02 2025 23:30:27 %S A263647 1,2,3,5,7,9,13,14,15,17,19,21,25,26,27,29,31,34,37,38,39,41,45,47,49, %T A263647 51,53,57,59,61,62,63,65,67,71,73,74,79,81,85,87,89,91,93,94,97,98, %U A263647 101,103,107,109,111,113,118,122,123,125,127,133,134,135,137,139,141,142,145,147,149,151,153,157,158,159,163,167,169,171 %N A263647 Numbers k such that 2^k-1 and 3^k-1 are coprime. %C A263647 n such that there is no k for which both A014664(k) and A062117(k) divide n. %C A263647 If n is in the sequence, then so is every divisor of n. %C A263647 1 and 2 are the only members that are in A006093. %C A263647 Conjectured to be infinite: see the Ailon and Rudnick paper. %H A263647 Robert Israel, <a href="/A263647/b263647.txt">Table of n, a(n) for n = 1..10000</a> %H A263647 Nir Ailon, Zéev Rudnick, <a href="https://doi.org/10.4064/aa113-1-3">Torsion points on curves and common divisors of a^k - 1 and b^k - 1</a>, Acta Arith. 113 (2004), 31-38. Also <a href="https://arxiv.org/abs/math/0202102">arXiv:math/0202102</a> [math.NT], 2002. %H A263647 Thomas Bloom, <a href="https://www.erdosproblems.com/820">Problem 820</a>, Erdős Problems. %e A263647 gcd(2^1-1, 3^1-1) = gcd(1,2) = 1, so a(1) = 1. %e A263647 gcd(2^2-1, 3^2-1) = gcd(3,8) = 1, so a(2) = 2. %e A263647 gcd(2^4-1, 3^4-1) = gcd(15,80) = 5, so 4 is not in the sequence. %p A263647 select(n -> igcd(2^n-1,3^n-1)=1, [$1..1000]); %t A263647 Select[Range[200], GCD[2^# - 1, 3^# - 1] == 1 &] (* _Vincenzo Librandi_, May 01 2016 *) %o A263647 (Magma) [n: n in [1..200] | Gcd(2^n-1, 3^n-1) eq 1]; // _Vincenzo Librandi_, May 01 2016 %Y A263647 Cf. A000225, A006093, A024023, A014664, A062117. %K A263647 nonn,changed %O A263647 1,2 %A A263647 _Robert Israel_, Oct 22 2015