cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263675 Numbers that are both averages of consecutive primes and nontrivial prime powers.

This page as a plain text file.
%I A263675 #33 Feb 16 2025 08:33:27
%S A263675 4,9,64,81,625,1681,4096,822649,1324801,2411809,2588881,2778889,
%T A263675 3243601,3636649,3736489,5527201,6115729,6405961,8720209,9006001,
%U A263675 12752041,16056049,16589329,18088009,21743569,25230529,29343889,34586161,37736449,39150049
%N A263675 Numbers that are both averages of consecutive primes and nontrivial prime powers.
%C A263675 Intersection of A024675 and A025475.
%C A263675 Lesser of consecutive primes is in the sequence A084289.
%H A263675 Robert Israel, <a href="/A263675/b263675.txt">Table of n, a(n) for n = 1..1560</a>
%H A263675 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Interprime.html">Interprime</a>
%e A263675 625 is in this sequence because 625 = 5^4, nontrivial prime power, and 625 = (619+631)/2, with 619 and 631 consecutive primes.
%p A263675 N:= 10^10: # to get all terms <= N
%p A263675 Primes:= select(isprime, [2,seq(i,i=3..isqrt(N),2)]):
%p A263675 S:= select(t -> t - prevprime(t) = nextprime(t)-t, {seq(seq(p^j, j=2..floor(log[p](N))),p=Primes)}):
%p A263675 sort(convert(S,list)); # _Robert Israel_, Dec 27 2015
%t A263675 (* version >= 6 *)(#/2 + NextPrime[#]/2) & /@
%t A263675 Select[Prime[Range[5000000]], PrimePowerQ[#/2 + NextPrime[#]/2] &]
%t A263675 (* _Wouter Meeussen_, Oct 26 2015 *)
%o A263675 (PARI) {for(i=1,10^8,if(isprimepower(i)>1&&i==(precprime(i-1)+nextprime(i+1))/2,print1(i,", ")))}
%Y A263675 Cf. A075190, A075277, A075296, A078443, A084289, A130178, A263674, A263676.
%K A263675 nonn
%O A263675 1,1
%A A263675 _Antonio Roldán_, Oct 23 2015