cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A263678 Number of length n arrays of permutations of 0..n-1 with each element moved by -3 to 3 places and with no two consecutive decreases.

Original entry on oeis.org

1, 2, 5, 17, 53, 155, 429, 1210, 3457, 9948, 28528, 81636, 233344, 667390, 1909626, 5464861, 15637212, 44741387, 128011961, 366269502, 1047988385, 2998562936, 8579622673, 24548350663, 70238679485, 200969734254, 575022887468
Offset: 1

Views

Author

R. H. Hardin, Oct 23 2015

Keywords

Comments

Column 3 of A263683.

Examples

			Some solutions for n=7
..1....0....2....0....0....0....1....0....0....2....0....2....1....1....3....0
..0....4....0....1....2....1....3....2....2....0....1....1....4....3....1....1
..5....5....1....3....3....2....0....1....1....4....5....4....0....4....5....3
..2....6....5....2....1....6....2....3....6....1....2....0....2....0....0....2
..3....1....3....5....4....3....4....5....3....6....6....3....3....2....6....4
..6....2....6....4....5....4....5....4....4....3....3....6....5....5....2....6
..4....3....4....6....6....5....6....6....5....5....4....5....6....6....4....5
		

Crossrefs

Cf. A263683.

Formula

Empirical: a(n) = a(n-1) +3*a(n-2) +3*a(n-3) +5*a(n-4) +9*a(n-5) +22*a(n-6) -21*a(n-8) -13*a(n-9) +2*a(n-10) +3*a(n-11) -15*a(n-12) +7*a(n-14) +5*a(n-15) -a(n-16) -2*a(n-17) +3*a(n-18) -a(n-20).

A263679 Number of length n arrays of permutations of 0..n-1 with each element moved by -4 to 4 places and with no two consecutive decreases.

Original entry on oeis.org

1, 2, 5, 17, 70, 277, 1009, 3487, 11708, 39905, 137984, 481005, 1680187, 5852468, 20335048, 70581031, 244962297, 850636578, 2955043270, 10266945188, 35669911963, 123914096828, 430440925456, 1495206245569, 5193902810084
Offset: 1

Views

Author

R. H. Hardin, Oct 23 2015

Keywords

Comments

Column 4 of A263683.

Examples

			Some solutions for n=7
..3....1....1....3....0....3....3....2....2....4....3....0....0....1....4....2
..0....3....0....0....3....0....0....1....1....0....0....1....1....2....5....0
..2....0....3....4....4....2....6....5....3....6....1....6....3....0....0....4
..1....2....6....1....1....1....2....0....0....1....5....4....6....6....3....6
..6....6....4....2....5....5....5....6....6....2....2....5....2....3....1....1
..4....4....5....6....6....6....1....3....4....3....4....2....5....5....2....5
..5....5....2....5....2....4....4....4....5....5....6....3....4....4....6....3
		

Crossrefs

Cf. A263683.

Formula

Empirical: a(n) = a(n-1) +4*a(n-2) +5*a(n-3) +15*a(n-4) +32*a(n-5) +83*a(n-6) +177*a(n-7) +484*a(n-8) +31*a(n-9) -763*a(n-10) -877*a(n-11) -1255*a(n-12) -8*a(n-13) +689*a(n-14) -1926*a(n-15) -6341*a(n-16) +168*a(n-17) +4160*a(n-18) +5193*a(n-19) +14170*a(n-20) -90*a(n-21) -10484*a(n-22) +4691*a(n-23) +28799*a(n-24) -8336*a(n-25) -10253*a(n-26) +4897*a(n-27) -51433*a(n-28) -110*a(n-29) +39213*a(n-30) -19619*a(n-31) -38190*a(n-32) +25392*a(n-33) +3232*a(n-34) -6950*a(n-35) +33047*a(n-36) +5995*a(n-37) -24598*a(n-38) -929*a(n-39) +32120*a(n-40) -17156*a(n-41) -5644*a(n-42) +9174*a(n-43) -13742*a(n-44) -3448*a(n-45) +8503*a(n-46) +1927*a(n-47) -8426*a(n-48) +2497*a(n-49) +1593*a(n-50) -1252*a(n-51) +2298*a(n-52) +216*a(n-53) -1058*a(n-54) -131*a(n-55) +755*a(n-56) -128*a(n-57) -143*a(n-58) +32*a(n-59) -166*a(n-60) +13*a(n-61) +57*a(n-62) +4*a(n-63) -18*a(n-64) -2*a(n-65) +2*a(n-66) +4*a(n-68) -a(n-70)

A263680 Number of length n arrays of permutations of 0..n-1 with each element moved by -5 to 5 places and with no two consecutive decreases.

Original entry on oeis.org

1, 2, 5, 17, 70, 349, 1658, 7356, 30374, 121676, 479589, 1917853, 7777174, 31840851, 130793340, 537219555, 2200344721, 8992050521, 36701192008, 149773458903, 611384304706, 2496957012448, 10201222295479, 41681902590078
Offset: 1

Views

Author

R. H. Hardin, Oct 23 2015

Keywords

Comments

Column 5 of A263683.

Examples

			Some solutions for n=7
..0....4....3....5....0....5....2....0....4....2....0....2....4....2....3....5
..3....0....0....0....3....1....3....4....5....3....2....3....6....5....5....1
..6....5....2....3....4....2....0....1....6....5....4....0....0....6....0....4
..4....2....1....6....1....6....5....2....0....0....1....5....5....0....1....0
..5....6....6....1....2....0....1....5....1....1....3....1....2....3....6....3
..1....1....4....2....5....4....6....3....2....4....5....4....3....4....2....6
..2....3....5....4....6....3....4....6....3....6....6....6....1....1....4....2
		

Crossrefs

Cf. A263683.

A263681 Number of length n arrays of permutations of 0..n-1 with each element moved by -6 to 6 places and with no two consecutive decreases.

Original entry on oeis.org

1, 2, 5, 17, 70, 349, 2017, 11253, 58743, 286327, 1331630, 6077344, 27523597, 126333667, 587717372, 2760990038, 13033515692, 61583867944, 290639649211, 1368090247852, 6426462715392, 30151737816899, 141417395713905
Offset: 1

Views

Author

R. H. Hardin, Oct 23 2015

Keywords

Comments

Column 6 of A263683.

Examples

			Some solutions for n=7
..1....4....1....3....3....2....1....2....0....0....5....0....0....3....2....2
..0....5....6....6....5....6....0....5....5....2....6....1....1....1....6....0
..5....0....4....0....6....1....3....0....1....5....1....3....6....5....3....1
..6....1....5....2....0....4....2....1....4....6....3....4....4....0....5....6
..2....6....2....4....1....3....4....3....6....3....0....6....5....6....1....3
..3....2....3....1....2....5....5....4....2....4....2....2....2....2....4....4
..4....3....0....5....4....0....6....6....3....1....4....5....3....4....0....5
		

Crossrefs

Cf. A263683.

A263682 Number of length n arrays of permutations of 0..n-1 with each element moved by -7 to 7 places and with no two consecutive decreases.

Original entry on oeis.org

1, 2, 5, 17, 70, 349, 2017, 13358, 85403, 514631, 2892717, 15496398, 80361985, 412478090, 2110690179, 10938840527, 57413943808, 304300790810, 1621734608963, 8661768091020, 46243202420814, 246483106624494, 1310659258937117
Offset: 1

Views

Author

R. H. Hardin, Oct 23 2015

Keywords

Comments

Column 7 of A263683.

Examples

			Some solutions for n=7
..2....5....1....0....1....2....4....0....2....3....6....2....1....6....6....5
..6....1....0....5....2....4....1....3....3....1....0....5....3....4....1....0
..1....3....2....6....3....0....6....2....5....4....1....0....0....5....4....4
..4....6....3....3....6....6....0....4....0....6....5....4....6....1....2....6
..3....2....4....4....4....1....2....6....1....0....3....1....2....2....5....1
..5....4....5....1....5....3....5....1....4....2....4....6....5....3....0....2
..0....0....6....2....0....5....3....5....6....5....2....3....4....0....3....3
		

Crossrefs

Cf. A263683.
Showing 1-5 of 5 results.