This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A263684 #21 Jul 30 2022 20:09:36 %S A263684 0,1,5,16400,16401,16405,82000,82001,82005 %N A263684 Numbers whose base-4 and base-5 representations have only 0's and 1's. %C A263684 Intersection of A000695 and A033042. %C A263684 These appear to be all the terms. There are no more below 10^500. %e A263684 16400 is 10000100 in base 4 and 1011100 in base 5. %p A263684 split:= proc(ab, B) %p A263684 local a,b,La, Lb, k, j, a1, a2, b1, b2, x; %p A263684 global Res, count; %p A263684 a:= ab[1]; b:= ab[2]; %p A263684 if b-a <= 1000 then %p A263684 for x from a to b-1 do %p A263684 if max(convert(x,base,4)) <= 1 and max(convert(x,base,5)) <= 1 then %p A263684 count:= count+1; Res[count]:= x %p A263684 fi %p A263684 od; %p A263684 return ({}); %p A263684 fi; %p A263684 La:= convert(a,base,B); %p A263684 Lb:= convert(b,base,B); %p A263684 if nops(Lb) > nops(La) then La:= [op(La),0$(nops(Lb)-nops(La))] fi; %p A263684 k:= ListTools:-SelectLast(`>`,Lb-La,0,output=indices); %p A263684 if La[k] = 0 then %p A263684 a1:= a; %p A263684 b1:= 2 + add(B^i,i=1..k-2) + add(La[i]*B^(i-1),i=k+1..nops(La)); %p A263684 a2:= B^(k-1) + add(La[i]*B^(i-1),i=k+1..nops(La)); %p A263684 b2:= min(b, b1 + B^(k-1)); %p A263684 return(select(t -> (t[1]<t[2]),{[a1,b1],[a2,b2]})); %p A263684 elif La[k] = 1 then %p A263684 a1:= a; %p A263684 b1:= 2 + add(B^i,i=1..k-2) + add(La[i]*B^(i-1),i=k..nops(La)); %p A263684 return(select(t -> t[1]<t[2], [[a1,b1]])) %p A263684 else return ( {}) %p A263684 fi; %p A263684 end proc: %p A263684 count:= 0: Res:= 'Res': %p A263684 Cands:= {[0,10^400]}: %p A263684 while nops(Cands) > 0 do %p A263684 Cands:= map(op@split, Cands, 5); %p A263684 Cands:= map(op@split, Cands, 4); %p A263684 od: %p A263684 sort(convert(Res,list)); %t A263684 Select[Range[0,83000],Max[Join[IntegerDigits[#,4],IntegerDigits[#,5]]]<2&] (* _Harvey P. Dale_, Sep 04 2018 *) %o A263684 (PARI) isok(n) = (n==0) || ((vecmax(digits(n,4))<=1) && (vecmax(digits(n,5))<=1)); \\ _Michel Marcus_, Oct 24 2015 %Y A263684 Cf. A000695, A033042, A146025, A258981. %K A263684 nonn,fini,full %O A263684 1,3 %A A263684 _Robert Israel_, Oct 23 2015