A263691 Number of length n arrays of permutations of 0..n-1 with each element moved by -2 to 2 places and every three consecutive elements having its maximum within 3 of its minimum.
1, 2, 6, 14, 14, 16, 22, 36, 56, 85, 125, 189, 285, 434, 655, 993, 1499, 2271, 3432, 5197, 7857, 11893, 17985, 27218, 41167, 62293, 94227, 142571, 215672, 326309, 493637, 746845, 1129845, 1709362, 2585999, 3912361, 5918843, 8954567, 13547048
Offset: 1
Keywords
Examples
Some solutions for n=7: ..0....0....0....1....0....1....1....0....0....0....0....1....2....0....0....0 ..1....1....2....0....2....0....0....3....1....1....1....0....0....1....2....1 ..2....2....1....2....1....3....2....1....2....2....3....2....1....2....1....3 ..3....4....3....3....4....2....3....2....4....3....2....3....3....3....4....2 ..5....3....4....4....3....5....5....4....3....4....4....4....4....4....3....5 ..4....5....6....5....6....4....6....5....6....5....5....6....5....6....5....4 ..6....6....5....6....5....6....4....6....5....6....6....5....6....5....6....6
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 2 of A263693.
Formula
Empirical: a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-4) for n>12.
Empirical g.f.: x*(1 + x + 3*x^2 + 7*x^3 - 5*x^4 - 8*x^5 - 2*x^7 - x^9 - 2*x^10 - x^11) / (1 - x - x^2 + x^3 - x^4). - Colin Barker, Jan 02 2019