This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A263694 #14 Apr 19 2016 11:10:55 %S A263694 1,2,3,4,8,7,6,5,9,10,11,12,16,15,14,13,17,18,19,20,24,23,22,21,25,26, %T A263694 27,28,32,31,30,29,33,34,35,36,40,39,38,37,41,42,43,44,48,47,46,45,49, %U A263694 50,51,52,56,55,54,53,57,58,59,60,64,63,62,61,65,66,67,68,72,71,70,69,73,74,75 %N A263694 Expansion of (1 + x + x^2 + x^3 + 4*x^4 - x^5 - x^6 - x^7 + 3*x^8)/((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7)). %C A263694 In each group of 8 consecutive numbers, swap 5 and 8 terms, 6 and 7 terms. %H A263694 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %H A263694 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,0,1,-1). %F A263694 G.f.: (1 + x + x^2 + x^3 + 4*x^4 - x^5 - x^6 - x^7 + 3*x^8)/((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7)). %F A263694 a(n) = a(n-1) + a(n-8) - a(n-9). %F A263694 a(n) = 1 + n + 3*floor(n/4) - 2*floor((n+1)/8) - 2*floor((n+2)/8) - 2*floor((n+3)/8). - _Vaclav Kotesovec_, Apr 19 2016 %t A263694 CoefficientList[Series[(1 + x + x^2 + x^3 + 4 x^4 - x^5 - x^6 - x^7 + 3 x^8)/((1 - x)^2 (1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7)), {x, 0, 75}], x] %t A263694 LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 1, -1}, {1, 2, 3, 4, 8, 7, 6, 5, 9}, 75] %o A263694 (PARI) x='x+O('x^99); Vec((1+x+x^2+x^3+4*x^4-x^5-x^6-x^7+3*x^8)/((1-x)^2*(1+x+x^2+x^3 +x^4+x^5+x^6+x^7))) \\ _Altug Alkan_, Apr 18 2016 %Y A263694 Cf. A000027, A133256, A133259. %K A263694 nonn,easy %O A263694 0,2 %A A263694 _Ilya Gutkovskiy_, Apr 17 2016