cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263695 Even numbers such that the sum of the even divisors and the sum of the odd divisors are a square or a cube.

This page as a plain text file.
%I A263695 #24 Jun 08 2016 08:20:45
%S A263695 6,14,434,636,748,762,4620,5964,6204,6324,6580,6820,7084,7660,8404,
%T A263695 8636,8804,9010,9710,11342,11920,23622,29820,31020,31620,32844,35420,
%U A263695 36204,38964,39804,40044,42020,43180,44020,45724,46004,47564,48484,49146,50644,53444
%N A263695 Even numbers such that the sum of the even divisors and the sum of the odd divisors are a square or a cube.
%C A263695 It seems that the two sums are never both a square or a cube.
%C A263695 Conjecture [False!]: All squares belonging to a pair are associated with a unique cube. Conversely, all cubes are associated with a unique square.
%C A263695 The corresponding pairs (sum of even divisors, sum of odd divisors) are (2^3, 2^2), (4^2, 2^3), (8^3, 16^2), (36^2, 6^3), (36^2, 6^3), (32^2, 8^3), 11 times the pair (24^3, 48^2), 3 times the pair (108^2, 18^3), (30^3, 30^2), (32^3, 128^2), 16 times the pair (288^2, 24^3),...
%C A263695 We observe several classes of numbers that generate identical pairs, for example:
%C A263695 {636, 748} => pair (36^2, 6^3);
%C A263695 {4620, 5964, 6204, 6324,... } => pair (24^3, 48^2);
%C A263695 {9010, 9710, 11342} => pair (108^2, 18^3);
%C A263695 {29820, 31020, 31620, 32844, 35420,... } => pair (288^2, 24^3);
%C A263695 {69576, 72168, 87752, 98552,...} => pair (56^3, 112^2);
%C A263695 The conjecture above is false. Consider for example the triples of numbers {69576, 938184, 7505472} or {958528, 952520, 12382760}. For the first one the (even, odd) sum of divisors pairs are (56^3, 112^2), (1568^2, 56^3), and (4704^2, 56^3). - _Giovanni Resta_, May 28 2016
%H A263695 Charles R Greathouse IV, <a href="/A263695/b263695.txt">Table of n, a(n) for n = 1..10000</a>
%e A263695 434 is in the sequence because the divisors are {1, 2, 7, 14, 31, 62, 217, 434} => sum of even divisors = 2+14+62+434 = 512 = 8^3 and sum of odd divisors = 1+7+31+217 = 256 = 16^2.
%e A263695 636 is in the sequence because the divisors are {1, 2, 3, 4, 6, 12, 53, 106, 159, 212, 318, 636} => sum of even divisors = 2+4+6+12+106+212+318+636 = 1296 = 36^2 and sum of odd divisors = 1+3+53+159 = 216 = 6^3.
%p A263695 with(numtheory):
%p A263695 for n from 2 by 2  to 500000 do:
%p A263695    y:=divisors(n):n1:=nops(y):s0:=0:s1:=0:
%p A263695      for k from 1 to n1 do:
%p A263695        if irem(y[k], 2)=0
%p A263695         then
%p A263695         s0:=s0+ y[k]:
%p A263695         else
%p A263695         s1:=s1+ y[k]:
%p A263695       fi:
%p A263695      od:
%p A263695      ii:=0:
%p A263695         for a from 1 to 1000 while(ii=0)do:
%p A263695         for i from 2 to 3 do:
%p A263695          if s0=a^i
%p A263695           then
%p A263695            for b from 1 to 1000 while(ii=0) do:
%p A263695              if s1=b^(5-i)
%p A263695               then
%p A263695               ii:=1:printf(`%d, `,n):
%p A263695               else
%p A263695              fi:
%p A263695            od:
%p A263695           fi:
%p A263695         od:
%p A263695       od:
%p A263695      od:
%t A263695 es[n_] := 2 DivisorSigma[1, n/2]; os[n_] := DivisorSigma[1, n] - es[n]; powQ[n_] := Or @@ IntegerQ /@ (n^(1/{2, 3})); Select[2 Range[10^4], powQ@ es@ # && powQ@ os@ # &] (* _Giovanni Resta_, May 28 2016 *)
%o A263695 (PARI) isA002760(n)=issquare(n) || ispower(n,3)
%o A263695 is(n)=n%2==0 && isA002760(2*sigma(n/2)) && isA002760(sigma(n>>valuation(n,2))) \\ _Charles R Greathouse IV_, Jun 08 2016
%Y A263695 Cf. A000593, A074400, A146076.
%K A263695 nonn
%O A263695 1,1
%A A263695 _Michel Lagneau_, May 28 2016