A263710 Number of length n arrays of permutations of 0..n-1 with each element moved by -1 to 1 places and every four consecutive elements having its maximum within 4 of its minimum.
1, 2, 3, 5, 8, 11, 17, 25, 37, 57, 84, 127, 191, 284, 429, 641, 961, 1445, 2161, 3246, 4867, 7293, 10948, 16407, 24609, 36913, 55337, 83009, 124472, 186655, 279951, 419784, 629561, 944129, 1415809, 2123305, 3184145, 4775114, 7161091, 10738981, 16104880
Offset: 1
Keywords
Examples
Some solutions for n=7: ..0....0....0....0....1....0....0....1....1....0....1....1....0....0....1....0 ..2....1....2....2....0....1....1....0....0....1....0....0....1....1....0....1 ..1....2....1....1....2....2....2....2....2....3....2....3....2....3....3....3 ..3....3....3....4....3....3....4....4....4....2....3....2....4....2....2....2 ..4....4....5....3....4....4....3....3....3....4....4....4....3....4....4....5 ..5....6....4....5....6....5....5....6....5....5....5....6....6....6....5....4 ..6....5....6....6....5....6....6....5....6....6....6....5....5....5....6....6
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
- Michael A. Allen, Combinations without specified separations and restricted-overlap tiling with combs, arXiv:2210.08167 [math.CO], 2022.
Crossrefs
Column 1 of A263714.
Formula
Empirical: a(n) = a(n-1) + a(n-3) - a(n-4) + 2*a(n-5) - a(n-6) + a(n-7).
Empirical g.f.: x*(1 - x + x^2)*(1 + 2*x + 2*x^2 + x^3 + x^4) / (1 - x - x^3 + x^4 - 2*x^5 + x^6 - x^7). - Colin Barker, Jan 02 2019