This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A263714 #6 Jul 23 2025 15:35:44 %S A263714 1,1,2,1,2,3,1,2,6,5,1,2,6,14,8,1,2,6,24,31,11,1,2,6,24,78,34,17,1,2, %T A263714 6,24,120,60,39,25,1,2,6,24,120,72,50,46,37,1,2,6,24,120,144,54,52,64, %U A263714 57,1,2,6,24,120,144,60,54,70,104,84,1,2,6,24,120,144,108,54,72,116,161,127,1 %N A263714 T(n,k)=Number of length n arrays of permutations of 0..n-1 with each element moved by -k to k places and every four consecutive elements having its maximum within 4 of its minimum. %C A263714 Table starts %C A263714 ...1...1...1...1...1...1...1...1...1...1...1...1...1...1...1...1...1...1...1 %C A263714 ...2...2...2...2...2...2...2...2...2...2...2...2...2...2...2...2...2...2...2 %C A263714 ...3...6...6...6...6...6...6...6...6...6...6...6...6...6...6...6...6...6...6 %C A263714 ...5..14..24..24..24..24..24..24..24..24..24..24..24..24..24..24..24..24..24 %C A263714 ...8..31..78.120.120.120.120.120.120.120.120.120.120.120.120.120.120.120.120 %C A263714 ..11..34..60..72.144.144.144.144.144.144.144.144.144.144.144.144.144.144.144 %C A263714 ..17..39..50..54..60.108.108.108.108.108.108.108.108.108.108.108.108.108.108 %C A263714 ..25..46..52..54..54..60.108.108.108.108.108.108.108.108.108.108.108.108.108 %C A263714 ..37..64..70..72..72..72..81.144.144.144.144.144.144.144.144.144.144.144.144 %C A263714 ..57.104.116.120.120.120.120.147.240.240.240.240.240.240.240.240.240.240.240 %C A263714 ..84.161.184.192.192.192.192.192.228.384.384.384.384.384.384.384.384.384.384 %C A263714 .127.249.292.308.308.308.308.308.308.368.616.616.616.616.616.616.616.616.616 %C A263714 .191.385.449.480.480.480.480.480.480.480.576.960.960.960.960.960.960.960.960 %H A263714 R. H. Hardin, <a href="/A263714/b263714.txt">Table of n, a(n) for n = 1..618</a> %F A263714 Empirical for column k: %F A263714 k=1: a(n) = a(n-1) +a(n-3) -a(n-4) +2*a(n-5) -a(n-6) +a(n-7) %F A263714 k=2: a(n) = a(n-1) +a(n-3) -a(n-4) +2*a(n-5) -a(n-6) +a(n-7) for n>18 %F A263714 k=3: a(n) = a(n-1) +a(n-3) -a(n-4) +2*a(n-5) -a(n-6) +a(n-7) for n>18 %F A263714 k=4: a(n) = a(n-1) +a(n-3) -a(n-4) +2*a(n-5) -a(n-6) +a(n-7) for n>18 %F A263714 k=5: a(n) = a(n-1) +a(n-3) -a(n-4) +2*a(n-5) -a(n-6) +a(n-7) for n>18 %F A263714 k=6: a(n) = a(n-1) +a(n-3) -a(n-4) +2*a(n-5) -a(n-6) +a(n-7) for n>18 %F A263714 k=7: a(n) = a(n-1) +a(n-3) -a(n-4) +2*a(n-5) -a(n-6) +a(n-7) for n>18 %e A263714 Some solutions for n=7 k=4 %e A263714 ..0....0....1....0....0....0....0....3....1....0....0....0....0....1....1....0 %e A263714 ..1....1....0....1....4....1....1....0....0....1....2....1....1....0....0....1 %e A263714 ..3....3....3....2....1....3....2....1....3....3....1....2....3....4....4....4 %e A263714 ..4....2....4....3....3....4....4....4....2....2....4....3....2....2....3....2 %e A263714 ..2....5....2....5....5....5....5....2....4....4....3....4....4....3....2....3 %e A263714 ..5....4....5....6....2....6....3....5....5....5....5....5....6....5....5....5 %e A263714 ..6....6....6....4....6....2....6....6....6....6....6....6....5....6....6....6 %K A263714 nonn,tabl %O A263714 1,3 %A A263714 _R. H. Hardin_, Oct 24 2015