cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A263710 Number of length n arrays of permutations of 0..n-1 with each element moved by -1 to 1 places and every four consecutive elements having its maximum within 4 of its minimum.

Original entry on oeis.org

1, 2, 3, 5, 8, 11, 17, 25, 37, 57, 84, 127, 191, 284, 429, 641, 961, 1445, 2161, 3246, 4867, 7293, 10948, 16407, 24609, 36913, 55337, 83009, 124472, 186655, 279951, 419784, 629561, 944129, 1415809, 2123305, 3184145, 4775114, 7161091, 10738981, 16104880
Offset: 1

Views

Author

R. H. Hardin, Oct 24 2015

Keywords

Examples

			Some solutions for n=7:
..0....0....0....0....1....0....0....1....1....0....1....1....0....0....1....0
..2....1....2....2....0....1....1....0....0....1....0....0....1....1....0....1
..1....2....1....1....2....2....2....2....2....3....2....3....2....3....3....3
..3....3....3....4....3....3....4....4....4....2....3....2....4....2....2....2
..4....4....5....3....4....4....3....3....3....4....4....4....3....4....4....5
..5....6....4....5....6....5....5....6....5....5....5....6....6....6....5....4
..6....5....6....6....5....6....6....5....6....6....6....5....5....5....6....6
		

Crossrefs

Column 1 of A263714.

Formula

Empirical: a(n) = a(n-1) + a(n-3) - a(n-4) + 2*a(n-5) - a(n-6) + a(n-7).
Empirical g.f.: x*(1 - x + x^2)*(1 + 2*x + 2*x^2 + x^3 + x^4) / (1 - x - x^3 + x^4 - 2*x^5 + x^6 - x^7). - Colin Barker, Jan 02 2019

A263711 Number of length n arrays of permutations of 0..n-1 with each element moved by -2 to 2 places and every four consecutive elements having its maximum within 4 of its minimum.

Original entry on oeis.org

1, 2, 6, 14, 31, 34, 39, 46, 64, 104, 161, 249, 385, 561, 845, 1254, 1871, 2833, 4228, 6359, 9545, 14273, 21453, 32133, 48184, 72323, 108363, 162592, 243817, 365545, 548369, 822181, 1233053, 1849282, 2772959, 4158841, 6236608, 9352579, 14026153
Offset: 1

Views

Author

R. H. Hardin, Oct 24 2015

Keywords

Examples

			Some solutions for n=7:
..1....0....1....1....0....0....0....1....0....1....0....0....2....1....1....0
..0....1....0....0....1....1....1....0....2....0....1....1....0....0....0....1
..4....2....2....3....4....3....3....3....1....3....4....2....1....2....4....2
..2....3....3....4....3....4....4....2....3....4....2....4....4....3....3....4
..3....5....4....2....2....2....2....4....4....2....5....3....3....4....2....5
..6....4....5....6....6....6....5....5....5....5....3....5....5....6....5....3
..5....6....6....5....5....5....6....6....6....6....6....6....6....5....6....6
		

Crossrefs

Column 2 of A263714.

Formula

Empirical: a(n) = a(n-1) + a(n-3) - a(n-4) + 2*a(n-5) - a(n-6) + a(n-7) for n>18.
Empirical g.f.: x*(1 + x + 4*x^2 + 7*x^3 + 16*x^4 - 3*x^5 - 6*x^6 - 21*x^7 - 9*x^8 - 19*x^9 - x^10 - 5*x^11 + 9*x^12 - 2*x^13 + 6*x^14 - 9*x^15 - 4*x^17) / (1 - x - x^3 + x^4 - 2*x^5 + x^6 - x^7). - Colin Barker, Jan 02 2019

A263712 Number of length n arrays of permutations of 0..n-1 with each element moved by -3 to 3 places and every four consecutive elements having its maximum within 4 of its minimum.

Original entry on oeis.org

1, 2, 6, 24, 78, 60, 50, 52, 70, 116, 184, 292, 449, 649, 969, 1429, 2137, 3238, 4839, 7285, 10924, 16339, 24553, 36769, 55153, 82769, 124024, 186099, 279039, 418384, 627613, 940985, 1411273, 2116505, 3173705, 4759874, 7137847, 10704221, 16053112
Offset: 1

Views

Author

R. H. Hardin, Oct 24 2015

Keywords

Examples

			Some solutions for n=7:
..0....0....1....3....1....0....0....0....0....1....0....0....0....0....0....1
..1....3....0....0....0....1....4....1....4....0....1....4....1....1....1....0
..3....1....2....1....4....3....1....2....1....2....4....1....4....2....4....3
..4....4....4....4....2....4....2....3....3....3....2....2....2....4....2....4
..2....2....3....2....3....2....3....5....5....4....5....5....3....3....3....2
..6....5....6....5....6....5....5....6....2....6....6....3....5....5....6....5
..5....6....5....6....5....6....6....4....6....5....3....6....6....6....5....6
		

Crossrefs

Column 3 of A263714.

Formula

Empirical: a(n) = a(n-1) +a(n-3) -a(n-4) +2*a(n-5) -a(n-6) +a(n-7) for n>18.
Empirical g.f.: x*(1 + x + 4*x^2 + 17*x^3 + 53*x^4 - 24*x^5 - 31*x^6 - 63*x^7 - 8*x^8 - 82*x^9 - 28*x^11 - 3*x^12 - 6*x^13 - 2*x^14 - 19*x^15 - 8*x^16 - 9*x^17) / (1 - x - x^3 + x^4 - 2*x^5 + x^6 - x^7). - Colin Barker, Jan 02 2019

A263713 Number of length n arrays of permutations of 0..n-1 with each element moved by -4 to 4 places and every four consecutive elements having its maximum within 4 of its minimum.

Original entry on oeis.org

1, 2, 6, 24, 120, 72, 54, 54, 72, 120, 192, 308, 480, 688, 1024, 1504, 2244, 3408, 5092, 7672, 11508, 17200, 25856, 38712, 58064, 87156, 130576, 195948, 293808, 440500, 660832, 990752, 1485920, 2228496, 3341556, 5011696, 7515444, 11270424, 16902388
Offset: 1

Views

Author

R. H. Hardin, Oct 24 2015

Keywords

Examples

			Some solutions for n=7:
..0....0....0....0....0....1....0....0....1....4....0....0....0....0....0....0
..4....2....3....1....1....0....1....1....0....0....1....4....1....3....1....1
..1....1....1....2....2....3....4....3....2....1....4....1....3....1....3....2
..2....3....2....4....4....2....2....2....3....3....2....2....4....4....2....3
..3....5....4....5....3....4....5....5....4....2....3....5....2....2....4....4
..5....4....5....6....6....5....3....6....5....5....5....3....5....5....6....5
..6....6....6....3....5....6....6....4....6....6....6....6....6....6....5....6
		

Crossrefs

Column 4 of A263714.

Formula

Empirical: a(n) = a(n-1) +a(n-3) -a(n-4) +2*a(n-5) -a(n-6) +a(n-7) for n>18.
Empirical g.f.: x*(1 + x + 4*x^2 + 17*x^3 + 95*x^4 - 54*x^5 - 39*x^6 - 107*x^7 + 22*x^8 - 156*x^9 + 24*x^10 - 58*x^11 - 2*x^12 - 8*x^13 - 2*x^14 - 28*x^15 - 12*x^16 - 16*x^17) / (1 - x - x^3 + x^4 - 2*x^5 + x^6 - x^7). - Colin Barker, Jan 02 2019

A263709 Number of length n arrays of permutations of 0..n-1 with each element moved by -n to n places and every four consecutive elements having its maximum within 4 of its minimum.

Original entry on oeis.org

1, 2, 6, 24, 120, 144, 108, 108, 144, 240, 384, 616, 960, 1376, 2048, 3008, 4488, 6816, 10184, 15344, 23016
Offset: 1

Views

Author

R. H. Hardin, Oct 24 2015

Keywords

Comments

Diagonal of A263714

Examples

			Some solutions for n=7
..1....5....0....1....6....0....3....6....0....3....0....6....0....0....0....0
..0....6....4....0....2....2....0....5....1....6....3....5....1....1....1....1
..2....4....1....3....5....1....1....4....3....5....1....2....3....3....2....4
..3....2....2....2....3....3....4....3....2....4....4....3....4....2....4....2
..4....3....3....4....1....5....2....2....5....2....5....1....5....4....3....5
..6....1....5....6....4....4....5....1....4....1....2....4....6....6....6....3
..5....0....6....5....0....6....6....0....6....0....6....0....2....5....5....6
		

Crossrefs

Showing 1-5 of 5 results.