cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263715 Nonnegative integers that are the sum or difference of two squares.

This page as a plain text file.
%I A263715 #21 Jun 28 2022 15:28:51
%S A263715 0,1,2,3,4,5,7,8,9,10,11,12,13,15,16,17,18,19,20,21,23,24,25,26,27,28,
%T A263715 29,31,32,33,34,35,36,37,39,40,41,43,44,45,47,48,49,50,51,52,53,55,56,
%U A263715 57,58,59,60,61,63,64,65,67,68,69,71,72,73,74,75,76,77,79,80
%N A263715 Nonnegative integers that are the sum or difference of two squares.
%C A263715 Contains all integers that are not equal to 2 (mod 4) (they are of the form y^2 - x^2) and those of the form 4k+2 = 2*(2k+1) with the odd number 2k+1 equal to the sum of two squares (A057653).
%H A263715 Jean-Christophe Hervé, <a href="/A263715/b263715.txt">Table of n, a(n) for n = 1..10000</a>
%F A263715 Union of A001481 (sums of two squares) and A042965 (differences of two squares).
%F A263715 Union of A042965 and 2*A057653 = A097269, with intersection of A042965 and A097269 = {}.
%F A263715 Union of A020668 (x^2+y^2 and a^2-b^2), A097269 (x^2+y^2, not a^2-b^2) and A263737 (not x^2+y^2, a^2-b^2).
%e A263715 2 = 1^2 + 1^2, 3 = 2^2 - 1^2, 4 = 2^2 + 0^2, 5 = 2^2 + 1^2 = 3^2 - 2^2.
%t A263715 r[n_] := Reduce[n == x^2 + y^2, {x, y}, Integers] || Reduce[0 <= y <= x && n == x^2 - y^2, {x, y}, Integers]; Reap[Do[If[r[n] =!= False, Sow[n]], {n, 0, 80}]][[2, 1]] (* _Jean-François Alcover_, Oct 25 2015 *)
%o A263715 (Python)
%o A263715 from itertools import count, islice
%o A263715 from sympy import factorint
%o A263715 def A263715_gen(): # generator of terms
%o A263715     return filter(lambda n: n & 3 != 2 or all(p & 3 != 3 or e & 1 == 0 for p, e in factorint(n).items()),count(0))
%o A263715 A263715_list = list(islice(A263715_gen(),30)) # _Chai Wah Wu_, Jun 28 2022
%Y A263715 Cf. A001481, A057653, A097269, A042965, A020668, A263737.
%Y A263715 Cf. A062316 (complement), A079298.
%K A263715 nonn
%O A263715 1,3
%A A263715 _Jean-Christophe Hervé_, Oct 24 2015