This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A263717 #27 May 22 2025 10:21:43 %S A263717 0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,2,0,0,0,0,0,0,1,0, %T A263717 2,0,0,0,0,0,0,1,0,2,0,0,0,1,1,0,2,0,3,0,0,0,1,1,0,2,0,3,0,0,0,1,1,0, %U A263717 2,0,3,0,1,1,2,2,0,3,0,5,0,1,1,2,2,0,3,0,5,0,1,1,2,2,0,3,1,6 %N A263717 Number of partitions of n into perfect odd powers (1 being excluded). %H A263717 Martin Y. Champel, <a href="/A263717/a263717.txt">Table of n, a(n) for n = 1...999</a> %e A263717 a(97) = #{8*9+25, 5*9+25+27, 2*9+25+2*27} = 3. %t A263717 Needs["Combinatorica`"]; Length@ Select[Combinatorica`Partitions@ #, AllTrue[#, And[PrimePowerQ@ #, ! PrimeQ@ #, OddQ@ #] &, 1] &] & /@ Range[2, 52] (* _Michael De Vlieger_, Nov 05 2015, Version 10 *) %o A263717 (Python) # Python version 2.7 %o A263717 def a(n): %o A263717 base = sorted(list(set([a**b for b in range(2,int(log(n)/log(2))) for a in range(3,1+int(n**(1./b)),2)]))) %o A263717 lb = len(base) %o A263717 if lb == 0: %o A263717 return 0 %o A263717 sol = 0 %o A263717 s = [n // base[0]] %o A263717 if lb == 1: %o A263717 if n % base[0] == 0: return 1 %o A263717 return 0 %o A263717 while True: %o A263717 k = s.pop() %o A263717 while k < 0: %o A263717 if s ==(lb-1)*[0]: %o A263717 return sol %o A263717 k = s.pop() - 1 %o A263717 s.append(k) %o A263717 x = n - sum([s[i]*base[i] for i in range(len(s))]) %o A263717 ls = len(s) %o A263717 if ls == lb: %o A263717 continue %o A263717 a = x // base[ls] %o A263717 b = x % base[ls] %o A263717 if b == 0: %o A263717 s.append(a) %o A263717 sol +=1 %o A263717 if len(s) == lb: %o A263717 s.pop() %o A263717 s.append(-1) %o A263717 r = s.pop() - 2 %o A263717 s.append(r) %o A263717 else: %o A263717 s.append(a-1) %o A263717 if a!=0: %o A263717 if len(s) == lb: s[lb-1]=-1 %Y A263717 Cf. A075109, A112344. %K A263717 nonn %O A263717 1,26 %A A263717 _Martin Y. Champel_, Oct 24 2015