cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263720 Palindromic numbers such that the sum of the digits equals the number of divisors.

This page as a plain text file.
%I A263720 #38 Feb 16 2025 08:33:27
%S A263720 1,2,11,22,101,202,444,525,828,1111,2222,4884,5445,5775,12321,13431,
%T A263720 18081,21612,24642,26862,31213,44244,44844,51415,52425,56265,62426,
%U A263720 80008,86868,89298,99099,135531,162261,198891,217712,237732,301103,343343,480084,486684,512215,521125
%N A263720 Palindromic numbers such that the sum of the digits equals the number of divisors.
%C A263720 Subsequence of A002113.
%C A263720 A000005(a(n)) = A007953(a(n)).
%C A263720 The only known palindromic primes whose sum of digits equals the numbers of divisors (primes of the form 10^k + 1) are 2,11,101.
%H A263720 Chai Wah Wu, <a href="/A263720/b263720.txt">Table of n, a(n) for n = 1..10000</a>
%H A263720 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PalindromicNumber.html">Palindromic Number</a>
%H A263720 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DivisorFunction.html">Divisor Function</a>
%H A263720 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DigitSum.html">Digit Sum</a>
%e A263720 a(3) = 11, 11 is the palindromic number, digitsum(11) = 1 + 1 = 2, sigma_0(11) = 2.
%t A263720 fQ[n_] := Block[{d = IntegerDigits@ n}, And[d == Reverse@ d, Total@ d == DivisorSigma[0, n]]]; Select[Range[2^19], fQ] (* _Michael De Vlieger_, Oct 27 2015 *)
%t A263720 Select[Range[600000],PalindromeQ[#]&&Total[IntegerDigits[#]] == DivisorSigma[ 0,#]&] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Aug 28 2019 *)
%o A263720 (PARI) lista(nn) = {for(n=1, nn, my(d = digits(n)); if ((Vecrev(d) == d) && (numdiv(n) == sumdigits(n)), print1(n, ", ")););} \\ _Michel Marcus_, Oct 25 2015
%Y A263720 Cf. A002113, A057531.
%K A263720 nonn,base
%O A263720 1,2
%A A263720 _Ilya Gutkovskiy_, Oct 24 2015