This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A263720 #38 Feb 16 2025 08:33:27 %S A263720 1,2,11,22,101,202,444,525,828,1111,2222,4884,5445,5775,12321,13431, %T A263720 18081,21612,24642,26862,31213,44244,44844,51415,52425,56265,62426, %U A263720 80008,86868,89298,99099,135531,162261,198891,217712,237732,301103,343343,480084,486684,512215,521125 %N A263720 Palindromic numbers such that the sum of the digits equals the number of divisors. %C A263720 Subsequence of A002113. %C A263720 A000005(a(n)) = A007953(a(n)). %C A263720 The only known palindromic primes whose sum of digits equals the numbers of divisors (primes of the form 10^k + 1) are 2,11,101. %H A263720 Chai Wah Wu, <a href="/A263720/b263720.txt">Table of n, a(n) for n = 1..10000</a> %H A263720 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PalindromicNumber.html">Palindromic Number</a> %H A263720 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DivisorFunction.html">Divisor Function</a> %H A263720 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DigitSum.html">Digit Sum</a> %e A263720 a(3) = 11, 11 is the palindromic number, digitsum(11) = 1 + 1 = 2, sigma_0(11) = 2. %t A263720 fQ[n_] := Block[{d = IntegerDigits@ n}, And[d == Reverse@ d, Total@ d == DivisorSigma[0, n]]]; Select[Range[2^19], fQ] (* _Michael De Vlieger_, Oct 27 2015 *) %t A263720 Select[Range[600000],PalindromeQ[#]&&Total[IntegerDigits[#]] == DivisorSigma[ 0,#]&] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Aug 28 2019 *) %o A263720 (PARI) lista(nn) = {for(n=1, nn, my(d = digits(n)); if ((Vecrev(d) == d) && (numdiv(n) == sumdigits(n)), print1(n, ", ")););} \\ _Michel Marcus_, Oct 25 2015 %Y A263720 Cf. A002113, A057531. %K A263720 nonn,base %O A263720 1,2 %A A263720 _Ilya Gutkovskiy_, Oct 24 2015