cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263723 Number of representations of the prime P = A182479(n) as P = p^2 + q^2 + r^2, where p < q < r are also primes.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 3, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 1, 4, 2, 2, 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1
Offset: 1

Views

Author

Keywords

Comments

According to Sierpinski and Schinzel (1988), it is easy to prove that the smallest of p, q, r is always p = 3, and under Schinzel's hypothesis H the sequence is infinite.

Examples

			A182479(1) = 83 = 3^2 + 5^2 + 7^2 and A182479(2) = 179 = 3^2 + 7^2 + 11^2 are the only ways to write 83 and 179 as sums of squares of 3 distinct primes, so a(1) = 1 and a(2) = 1.
A182479(5) = 419 = 3^2 + 7^2 + 19^2 = 3^2 + 11^2 + 17^2 are the only such representations of 419, so a(5) = 2.
		

References

  • W. Sierpinski, Elementary Theory of Numbers, 2nd English edition, revised and enlarged by A. Schinzel, Elsevier, 1988; see pp. 220-221.

Crossrefs

Programs

  • Mathematica
    lst = {}; r = 7; While[r < 132, q = 5; While[q < r, P = 9 + q^2 + r^2; If[PrimeQ@P, AppendTo[lst, P]];
      q = NextPrime@q]; r = NextPrime@r]; Take[Transpose[Tally@Sort@lst][[2]], 105]