A263723 Number of representations of the prime P = A182479(n) as P = p^2 + q^2 + r^2, where p < q < r are also primes.
1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 3, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 1, 4, 2, 2, 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1
Offset: 1
Keywords
Examples
A182479(1) = 83 = 3^2 + 5^2 + 7^2 and A182479(2) = 179 = 3^2 + 7^2 + 11^2 are the only ways to write 83 and 179 as sums of squares of 3 distinct primes, so a(1) = 1 and a(2) = 1. A182479(5) = 419 = 3^2 + 7^2 + 19^2 = 3^2 + 11^2 + 17^2 are the only such representations of 419, so a(5) = 2.
References
- W. Sierpinski, Elementary Theory of Numbers, 2nd English edition, revised and enlarged by A. Schinzel, Elsevier, 1988; see pp. 220-221.
Links
- Wikipedia, Schinzel's Hypothesis H
Programs
-
Mathematica
lst = {}; r = 7; While[r < 132, q = 5; While[q < r, P = 9 + q^2 + r^2; If[PrimeQ@P, AppendTo[lst, P]]; q = NextPrime@q]; r = NextPrime@r]; Take[Transpose[Tally@Sort@lst][[2]], 105]
Comments