A263724 Least prime p = prime(n)^2 + prime(n+1)^2 + prime(n+2)^2 + prime(n+3)^2 + q^2, where q > prime(n+3) is also prime.
373, 653, 1997, 1901, 2309, 3389, 4373, 5381, 6701, 8069, 10589, 12269, 18269, 18461, 19541, 22973, 24821, 29021, 32909, 38261, 46589, 45869, 50021, 53549, 56909, 66029, 69389, 77261, 87629, 93581, 102101, 107741, 118901, 128981, 131837, 145517, 152909, 159869, 170021, 188261, 184901, 196661, 214469, 229781, 237821, 252509, 277157, 281429, 291101, 305933, 317693, 333029, 344021, 359981, 370661, 387341, 395069, 418349, 460949
Offset: 2
Keywords
Examples
The primes 373 = 3^2 + 5^2 + 7^2 + 11^2 + 13^2, 653 = 5^2 + 7^2 + 11^2 + 13^2 + 17^2, and 1997 = 7^2 + 11^2 + 13^2 + 17^2 + 37^2 lead to a(1) = 373, a(2) = 653, and a(3) = 1997.
References
- W. Sierpinski, Elementary Theory of Numbers, 2nd English edition, revised and enlarged by A. Schinzel, Elsevier, 1988; see p. 221.
Links
- Wikipedia, Schinzel's Hypothesis H
Programs
-
Mathematica
Table[k = 4; While[p = Sum[Prime[n + j]^2, {j, 0, 3}] + Prime[n + k]^2; ! PrimeQ[p], k++]; p, {n, 2, 60}]
Comments