cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263724 Least prime p = prime(n)^2 + prime(n+1)^2 + prime(n+2)^2 + prime(n+3)^2 + q^2, where q > prime(n+3) is also prime.

Original entry on oeis.org

373, 653, 1997, 1901, 2309, 3389, 4373, 5381, 6701, 8069, 10589, 12269, 18269, 18461, 19541, 22973, 24821, 29021, 32909, 38261, 46589, 45869, 50021, 53549, 56909, 66029, 69389, 77261, 87629, 93581, 102101, 107741, 118901, 128981, 131837, 145517, 152909, 159869, 170021, 188261, 184901, 196661, 214469, 229781, 237821, 252509, 277157, 281429, 291101, 305933, 317693, 333029, 344021, 359981, 370661, 387341, 395069, 418349, 460949
Offset: 2

Views

Author

Jonathan Sondow, Oct 24 2015

Keywords

Comments

The corresponding prime q is in A263725.
The prime p exists for all n > 1 under Schinzel's Hypothesis H; see Sierpinski (1988), p. 221.
If q = prime(n+4), then p is in A133559 (prime sums of squares of 5 consecutive primes). The converse holds if a(n) != a(m) when n != m (which holds if a(n) < a(n+1), as appears to be true).

Examples

			The primes 373 = 3^2 + 5^2 + 7^2 + 11^2 + 13^2, 653 = 5^2 + 7^2 + 11^2 + 13^2 + 17^2, and 1997 = 7^2 + 11^2 + 13^2 + 17^2 + 37^2 lead to a(1) = 373, a(2) = 653, and a(3) = 1997.
		

References

  • W. Sierpinski, Elementary Theory of Numbers, 2nd English edition, revised and enlarged by A. Schinzel, Elsevier, 1988; see p. 221.

Crossrefs

Programs

  • Mathematica
    Table[k = 4;
    While[p = Sum[Prime[n + j]^2, {j, 0, 3}] + Prime[n + k]^2; ! PrimeQ[p],
      k++]; p, {n, 2, 60}]