cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263737 Nonnegative integers that are the difference of two squares but not the sum of two squares.

This page as a plain text file.
%I A263737 #16 Jun 28 2022 11:37:31
%S A263737 3,7,11,12,15,19,21,23,24,27,28,31,33,35,39,43,44,47,48,51,55,56,57,
%T A263737 59,60,63,67,69,71,75,76,77,79,83,84,87,88,91,92,93,95,96,99,103,105,
%U A263737 107,108,111,112,115,119,120,123,124,127,129,131,132,133,135,139,140
%N A263737 Nonnegative integers that are the difference of two squares but not the sum of two squares.
%C A263737 Intersection of A022544 (not the sum of two squares) and A042965 (differences of two squares).
%C A263737 The sequence contains all 4k + 3 and no 4k + 2 integers, and some 4k (4*A022544) and 4k+1 (A084109) integers. First differences are thus 1, 2, 3 or 4, each occurring infinitely often.
%H A263737 Jean-Christophe Hervé, <a href="/A263737/b263737.txt"> Table of n, a(n) for n = 1..5000</a>
%t A263737 rs[n_] := Reduce[n == x^2 + y^2, {x, y}, Integers]; rd[n_] := Reduce[0 <= y <= x && n == x^2 - y^2, {x, y}, Integers]; Reap[Do[If[rs[n] == False && rd[n] =!= False, Sow[n]], {n, 0, 140}]][[2, 1]] (* _Jean-François Alcover_, Oct 26 2015 *)
%o A263737 (Python)
%o A263737 from itertools import count, islice
%o A263737 from sympy import factorint
%o A263737 def A263737_gen(): # generator of terms
%o A263737     return filter(lambda n:n & 3 != 2 and any(p & 3 == 3 and e & 1 for p, e in factorint(n).items()),count(0))
%o A263737 A263737_list = list(islice(A263737_gen(),30)) # _Chai Wah Wu_, Jun 28 2022
%Y A263737 Cf. A001481, A022544, A042965, A016825, A020668, A062316, A097269, A263715.
%K A263737 nonn
%O A263737 1,1
%A A263737 _Jean-Christophe Hervé_, Oct 25 2015