This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A263746 #7 Jan 03 2019 05:26:38 %S A263746 1,2,6,14,31,73,160,357,814,1836,4140,9379,21163,47769,107940,243763, %T A263746 550469,1243468,2808345,6342601,14325494,32354798,73074320,165043749, %U A263746 372759852,841897006,1901473298,4294581633,9699541870,21906956858 %N A263746 Number of length n arrays of permutations of 0..n-1 with each element moved by -2 to 2 places and every three consecutive elements having its maximum within 5 of its minimum. %H A263746 R. H. Hardin, <a href="/A263746/b263746.txt">Table of n, a(n) for n = 1..210</a> %F A263746 Empirical: a(n) = a(n-1) + 2*a(n-2) + 2*a(n-3) - 3*a(n-5) + 7*a(n-6) - a(n-7) - 2*a(n-8) - 5*a(n-9) - 3*a(n-10) + 2*a(n-11) + 2*a(n-13). %F A263746 Empirical g.f.: x*(1 + x + 2*x^2 + 2*x^3 + x^4 + 5*x^5 - 4*x^6 - 6*x^7 - 5*x^8 - 2*x^9 + 3*x^10 + x^11 + 2*x^12) / (1 - x - 2*x^2 - 2*x^3 + 3*x^5 - 7*x^6 + x^7 + 2*x^8 + 5*x^9 + 3*x^10 - 2*x^11 - 2*x^13). - _Colin Barker_, Jan 03 2019 %e A263746 Some solutions for n=10: %e A263746 ..0....0....0....1....1....0....1....1....0....2....0....0....2....1....0....0 %e A263746 ..1....2....2....0....0....1....0....2....3....0....3....1....3....0....2....1 %e A263746 ..3....1....3....3....2....3....3....0....1....4....1....2....0....3....1....4 %e A263746 ..2....3....1....4....3....2....2....5....4....1....2....3....1....2....4....5 %e A263746 ..6....4....5....2....4....4....5....4....2....5....6....5....4....6....3....2 %e A263746 ..5....6....6....6....5....6....6....3....7....3....7....4....6....5....5....3 %e A263746 ..4....5....4....7....6....8....4....8....6....8....4....7....5....4....6....6 %e A263746 ..9....7....7....5....7....5....8....7....5....6....5....8....8....8....8....7 %e A263746 ..7....9....9....9....8....9....7....6....9....9....8....6....7....7....9....8 %e A263746 ..8....8....8....8....9....7....9....9....8....7....9....9....9....9....7....9 %Y A263746 Column 2 of A263752. %K A263746 nonn %O A263746 1,2 %A A263746 _R. H. Hardin_, Oct 25 2015