This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A263756 #26 May 26 2023 05:21:34 %S A263756 1,1,1,1,1,3,1,1,1,7,3,8,3,1,1,1,15,7,34,18,14,18,8,3,1,1,1,31,15,122, %T A263756 72,69,147,83,71,33,45,18,8,3,1,1,1,63,31,406,252,263,822,544,554,399, %U A263756 613,351,307,160,102,96,45,18,8,3,1,1,1,127,63,1298,828 %N A263756 Triangle read by rows: T(n,k) (n>=0, k>=0) is the number of permutations of n with sum of descent bottoms equal to k. %C A263756 Row sums give A000142. %H A263756 Alois P. Heinz, <a href="/A263756/b263756.txt">Rows n = 0..23, flattened</a> %H A263756 FindStat - Combinatorial Statistic Finder, <a href="http://www.findstat.org/StatisticsDatabase/St000154">The sum of the descent bottoms of a permutations</a>. %e A263756 Triangle begins: %e A263756 1; %e A263756 1; %e A263756 1,1; %e A263756 1,3,1,1; %e A263756 1,7,3,8,3,1,1; %e A263756 1,15,7,34,18,14,18,8,3,1,1; %e A263756 1,31,15,122,72,69,147,83,71,33,45,18,8,3,1,1; %e A263756 ... %p A263756 b:= proc(s) option remember; (n-> `if`(n=0, 1, expand( %p A263756 add(b(s minus {j})*`if`(j<n, x^j, 1), j=s))))(nops(s)) %p A263756 end: %p A263756 T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b({$1..n})): %p A263756 seq(T(n), n=0..9); # _Alois P. Heinz_, Oct 25 2015, revised, Jan 31 2023 %t A263756 b[s_] := b[s] = With[{n = Length[s]}, If[n == 0, 1, Expand[ Sum[b[s~Complement~{j}]*If[j < n, x^j, 1], {j, s}]]]]; %t A263756 T[n_] := CoefficientList[b[Range[n]], x]; %t A263756 Table[T[n], {n, 0, 9}] // Flatten (* _Jean-François Alcover_, May 26 2023, after _Alois P. Heinz_ *) %Y A263756 Cf. A000142, A263753. %K A263756 nonn,tabf %O A263756 0,6 %A A263756 _Christian Stump_, Oct 19 2015 %E A263756 Two terms (for rows 0 and 1) prepended and more terms from _Alois P. Heinz_, Oct 25 2015