This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A263780 #32 Jul 15 2024 10:48:04 %S A263780 1,1,2,6,23,106,565,3399,22678,165646,1311334,11161529,101478038, %T A263780 980157177,10011461983,107712637346,1216525155129,14380174353934, %U A263780 177440071258827,2280166654498540,30450785320307436,421820687108853017,6050801956624661417,89738550379292147192 %N A263780 Number of inversion sequences avoiding pattern 100. %C A263780 Number of length n inversion sequences avoiding e_i > e_j = e_k for i<j<k. A length n inversion sequence e_1,e_2,...,e_n consists of nonnegative integers e_t <= t-1. - _Alois P. Heinz_, Dec 19 2016 %H A263780 Jay Pantone, <a href="/A263780/b263780.txt">Table of n, a(n) for n = 0..200</a> %H A263780 Sylvie Corteel, Megan A. Martinez, Carla D. Savage, and Michael Weselcouch, <a href="http://arxiv.org/abs/1510.05434">Patterns in Inversion Sequences I</a>, arXiv:1510.05434 [math.CO], 2015. %H A263780 Ilias Kotsireas, Toufik Mansour, and Gökhan Yıldırım, <a href="https://doi.org/10.1016/j.jsc.2023.102231">An Algorithmic Approach Based on Generating Trees for Enumerating Pattern-Avoiding Inversion Sequences</a>, J. Symbolic Comput. 120 (2024), Paper No. 102231, 18 pp. %H A263780 Megan A. Martinez and Carla D. Savage, <a href="https://arxiv.org/abs/1609.08106">Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations</a>, arXiv:1609.08106 [math.CO], 2016. %H A263780 Jay Pantone, <a href="https://arxiv.org/abs/2310.19632">The enumeration of inversion sequences avoiding the patterns 201 and 210</a>, arXiv:2310.19632 [math.CO], 2023. %H A263780 Benjamin Testart, <a href="https://arxiv.org/abs/2407.07701">Completing the enumeration of inversion sequences avoiding one or two patterns of length 3</a>, arXiv:2407.07701 [math.CO], 2024. See p. 2. %Y A263780 Cf. A263777, A263778, A263779, A279544. %K A263780 nonn %O A263780 0,3 %A A263780 _Michel Marcus_, Oct 26 2015 %E A263780 a(0)=1 prepended by _Alois P. Heinz_, Dec 15 2016 %E A263780 a(10)-a(23) from _Alois P. Heinz_, Dec 19 2016