This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A263789 #39 May 13 2020 19:21:11 %S A263789 1,1,0,2,0,6,0,16,8,0,40,80,0,96,528,96,0,224,2912,1904,0,512,14592, %T A263789 23040,2176,0,1152,69120,221184,71424,0,2560,316160,1858560,1372160, %U A263789 79360,0,5632,1413632,14353152,20252672,3891712,0,12288,6223872,104742912 %N A263789 Triangle read by rows: T(n,k) (n>=0, 0<=k<=floor(n/2)) is the number of permutations of n and k valleys (considered cyclically). %C A263789 Conjecture: column k > 0 is asymptotic to n * 2^(n-2*k) * k^(n-1). - _Vaclav Kotesovec_, Oct 26 2015 %H A263789 Alois P. Heinz, <a href="/A263789/b263789.txt">Rows n = 0..200, flattened</a> %H A263789 FindStat - Combinatorial Statistic Finder, <a href="http://www.findstat.org/StatisticsDatabase/St000243">The number of cyclic valleys and cyclic peaks of a permutation</a>. %F A263789 T(n,k) = n*A008303(n-1, k-1) for n > 1. - _Andrew Howroyd_, May 13 2020 %e A263789 Triangle begins: %e A263789 1; %e A263789 1; %e A263789 0, 2; %e A263789 0, 6; %e A263789 0, 16, 8; %e A263789 0, 40, 80; %e A263789 0, 96, 528, 96; %e A263789 ... %p A263789 b:= proc(u, o, t) option remember; expand(`if`(u+o=0, x, %p A263789 add(b(u-j, o+j-1, 0), j=1..u)*`if`(min(t, n)>0, x, 1)+ %p A263789 add(b(u+j-1, o-j, 1), j=1..o))) %p A263789 end: %p A263789 T:= n-> `if`(n<2, 1, (p-> seq(n*coeff(p, x, i) %p A263789 , i=0..degree(p)))(b(n-1, 0$2))): %p A263789 seq(T(n), n=0..14); # _Alois P. Heinz_, Oct 28 2015 %t A263789 b[u_, o_, t_] := b[u, o, t] = Expand[If[u+o == 0, x, Sum[b[u-j, o+j-1, 0], {j, 1, u}]*If[Min[t, n] > 0, x, 1] + Sum[b[u+j-1, o-j, 1], {j, 1, o}]]]; T[n_] := If[n<2, 1, Function[p, Table[n*Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n-1, 0, 0]]]; Table[T[n], {n, 0, 14}] // Flatten (* _Jean-François Alcover_, Jan 24 2017, after _Alois P. Heinz_ *) %Y A263789 Columns k=1-6 give: A057711 (for n>1), A159710, A159711, A159712, A159713, A159714. %Y A263789 Row sums give A000142. %Y A263789 Cf. A000142, A008303. %K A263789 nonn,tabf %O A263789 0,4 %A A263789 _Christian Stump_, Oct 26 2015 %E A263789 More terms from _Alois P. Heinz_, Oct 26 2015