cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263791 Number of permutations of [n] avoiding the generalized patterns 1(k+2)-(u_1+1)-...-(u_k+1) for all permutations u of [k].

This page as a plain text file.
%I A263791 #17 Dec 30 2015 18:35:51
%S A263791 1,1,1,1,2,1,1,2,5,1,1,2,6,14,1,1,2,6,22,42,1,1,2,6,24,92,132,1,1,2,6,
%T A263791 24,114,420,429,1,1,2,6,24,120,612,2042,1430,1,1,2,6,24,120,696,3600,
%U A263791 10404,4862,1,1,2,6,24,120,720,4512,22680,54954,16796,1,1,2,6,24,120,720,4920,31920,150732,298648,58786,1,1,2,6,24,120,720,5040,37200,242160,1045440
%N A263791 Number of permutations of [n] avoiding the generalized patterns 1(k+2)-(u_1+1)-...-(u_k+1) for all permutations u of [k].
%C A263791 The sequence reads the antidiagonals of the table [a(n,k)] (for k >= 0 and n >= 1). See examples below.
%C A263791 a(n,k) is the number of permutations of [n] avoiding the generalized patterns 1(k+2)-(u_1+1)-...-(u_k+1) for all permutations u of [k].
%C A263791 a(n,k) is the number of classes of the k-twist congruence on S_n, defined as the transitive closure of the rewriting rule UacV_1b_1...V_kb_kW = UcaV_1b_1...V_kb_kW for a < b_1, ..., b_k < c in [n] and U, V_1, ..., V_k, W some (possibly empty) words on [n].
%C A263791 a(n,k) is the number of (k,n)-twists whose contact graph is acyclic. A (k,n)-twist is a reduced pipe dream for the permutation (1, ..., k, n+k, ..., k+1, n+k+1, ..., n+2k). The contact graph of a (k,n)-twist is the graph with a node for each pipe and an oriented arc for each elbow from the pipe passing southeast of the elbow to the pipe passing northwest of the elbow.
%C A263791 a(n,k) is the number of vertices of the brick polytope for the word c^k w_o(c) where c = 1 2 ... n-1 is the linear Coxeter element in type A.
%H A263791 V. Pilaud, <a href="http://arxiv.org/abs/1505.07665">Brick polytopes, lattice quotients, and Hopf algebras</a>, arXiv:1505.07665 [math.CO], 2015.
%F A263791 a(n,0) = 1.
%F A263791 a(n,1) = binomial(2n,n)/(n+1) (Catalan number A000108).
%F A263791 When n <= k+1, a(n,k) = n! (factorial A000142).
%e A263791 Table a(n,k) begins (row index n >= 1, column index k >= 0):
%e A263791 1     1      1       1       1       1       1       1       1       1 ...
%e A263791 1     2      2       2       2       2       2       2       2       2 ...
%e A263791 1     5      6       6       6       6       6       6       6       6 ...
%e A263791 1    14     22      24      24      24      24      24      24      24 ...
%e A263791 1    42     92     114     120     120     120     120     120     120 ...
%e A263791 1   132    420     612     696     720     720     720     720     720 ...
%e A263791 1   429   2042    3600    4512    4920    5040    5040    5040    5040 ...
%e A263791 1  1430  10404   22680   31920   37200   39600   40320   40320   40320 ...
%e A263791 1  4862  54954  150732  242160  305280  341280  357840  362880  362880 ...
%e A263791 1 16796 298648 1045440 1942800 2680800 3175200 3457440 3588480 3628800 ...
%e A263791 ..........................................................................
%Y A263791 Cf. A000108, A000142.
%K A263791 nonn,tabl
%O A263791 1,5
%A A263791 _Vincent Pilaud_, Oct 26 2015