A263796 Number of (n+1)X(5+1) 0..1 arrays with each row and column divisible by 3, read as a binary number with top and left being the most significant bits, and rows and columns lexicographically nonincreasing.
4, 4, 14, 17, 61, 130, 494, 1435, 4917, 13962, 41366, 107284, 280438, 666212, 1574783, 3468753, 7560914, 15618901, 31856173, 62297164, 120205886, 224230549, 412782291, 739028663, 1306513751, 2256420867, 3851037496, 6442700456
Offset: 1
Keywords
Examples
Some solutions for n=5 ..1..1..1..1..0..0....1..1..1..1..0..0....1..1..1..1..0..0....1..1..1..1..1..1 ..1..1..1..1..0..0....1..1..0..0..1..1....1..1..0..0..0..0....1..1..1..1..1..1 ..1..1..1..1..0..0....1..0..1..0..1..0....1..0..1..0..1..0....1..1..1..1..0..0 ..1..1..1..1..0..0....1..0..0..1..0..0....1..0..0..1..1..1....1..1..1..1..0..0 ..1..1..0..0..1..1....0..1..1..0..1..1....0..0..1..0..0..1....1..1..0..0..0..0 ..1..1..0..0..1..1....0..1..0..0..1..0....0..0..0..0..0..0....1..1..0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A263799
Formula
Empirical: a(n) = a(n-1) +18*a(n-2) -18*a(n-3) -153*a(n-4) +153*a(n-5) +816*a(n-6) -816*a(n-7) -3060*a(n-8) +3060*a(n-9) +8568*a(n-10) -8568*a(n-11) -18564*a(n-12) +18564*a(n-13) +31824*a(n-14) -31824*a(n-15) -43758*a(n-16) +43758*a(n-17) +48620*a(n-18) -48620*a(n-19) -43758*a(n-20) +43758*a(n-21) +31824*a(n-22) -31824*a(n-23) -18564*a(n-24) +18564*a(n-25) +8568*a(n-26) -8568*a(n-27) -3060*a(n-28) +3060*a(n-29) +816*a(n-30) -816*a(n-31) -153*a(n-32) +153*a(n-33) +18*a(n-34) -18*a(n-35) -a(n-36) +a(n-37)
Comments