A263797 Number of (n+1) X (6+1) 0..1 arrays with each row and column divisible by 3, read as a binary number with top and left being the most significant bits, and rows and columns lexicographically nonincreasing.
4, 4, 14, 18, 130, 616, 4991, 30130, 185795, 1022105, 5241463, 25403916, 113461481, 487306269, 1945016957, 7506601812, 27247184895, 95846215581, 320539609724, 1040469247149, 3239110764205, 9802122015937, 28643481268593, 81494869102471
Offset: 1
Keywords
Examples
Some solutions for n=5 ..1..1..0..0..0..0..0....1..1..1..1..0..0..0....1..1..1..1..0..0..0 ..1..1..0..0..0..0..0....1..1..0..0..1..1..0....1..1..1..1..0..0..0 ..0..0..1..1..1..1..0....1..0..1..0..1..1..1....1..1..1..1..0..0..0 ..0..0..1..1..1..1..0....1..0..0..1..0..0..0....1..1..1..1..0..0..0 ..0..0..0..0..0..0..0....0..1..1..0..0..0..0....1..1..0..0..0..0..0 ..0..0..0..0..0..0..0....0..1..0..0..0..0..1....1..1..0..0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
- R. H. Hardin, Empirical recurrence of order 83
Crossrefs
Column 6 of A263799.
Formula
Empirical recurrence of order 83 (see link above)