cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A263794 Number of (n+1) X (3+1) 0..1 arrays with each row and column divisible by 3, read as a binary number with top and left being the most significant bits, and rows and columns lexicographically nonincreasing.

Original entry on oeis.org

3, 3, 7, 7, 14, 14, 25, 25, 41, 41, 63, 63, 92, 92, 129, 129, 175, 175, 231, 231, 298, 298, 377, 377, 469, 469, 575, 575, 696, 696, 833, 833, 987, 987, 1159, 1159, 1350, 1350, 1561, 1561, 1793, 1793, 2047, 2047, 2324, 2324, 2625, 2625, 2951, 2951, 3303, 3303
Offset: 1

Views

Author

R. H. Hardin, Oct 26 2015

Keywords

Comments

Column 3 of A263799.

Examples

			Some solutions for n = 5:
  1 1 1 1    1 1 0 0    1 1 0 0    1 1 1 1    0 0 0 0
  1 1 1 1    1 1 0 0    1 1 0 0    1 1 1 1    0 0 0 0
  1 1 0 0    0 0 0 0    0 0 1 1    1 1 1 1    0 0 0 0
  1 1 0 0    0 0 0 0    0 0 1 1    1 1 1 1    0 0 0 0
  0 0 1 1    0 0 0 0    0 0 1 1    1 1 1 1    0 0 0 0
  0 0 1 1    0 0 0 0    0 0 1 1    1 1 1 1    0 0 0 0
		

Crossrefs

Formula

Empirical: a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7).
Empirical: a(n) = A058187(n-1) + floor((n+3)/2). - Filip Zaludek, Dec 14 2016
Conjectures from Colin Barker, Dec 14 2016: (Start)
a(n) = (n^3 + 6*n^2 + 32*n + 48)/48 for n even.
a(n) = (n^3 + 9*n^2 + 47*n + 87)/48 for n odd.
G.f.: x*(3 - 5*x^2 + 4*x^4 - x^6) / ((1 - x)^4*(1 + x)^3).
(End)

A263795 Number of (n+1)X(4+1) 0..1 arrays with each row and column divisible by 3, read as a binary number with top and left being the most significant bits, and rows and columns lexicographically nonincreasing.

Original entry on oeis.org

3, 3, 7, 7, 17, 18, 56, 66, 218, 272, 798, 1008, 2567, 3227, 7290, 9072, 18622, 22912, 43560, 52998, 94678, 113983, 193427, 230607, 374843, 442911, 694073, 813413, 1235202, 1436754, 2122943, 2452403, 3537837, 4061097, 5735701, 6545785, 9072159
Offset: 1

Views

Author

R. H. Hardin, Oct 26 2015

Keywords

Comments

Column 4 of A263799

Examples

			Some solutions for n=5
..1..1..0..0..0....0..0..0..0..0....1..1..1..1..0....1..1..0..0..0
..1..1..0..0..0....0..0..0..0..0....1..1..1..1..0....1..1..0..0..0
..1..1..0..0..0....0..0..0..0..0....1..1..0..0..0....1..1..0..0..0
..1..1..0..0..0....0..0..0..0..0....1..1..0..0..0....1..1..0..0..0
..1..1..0..0..0....0..0..0..0..0....0..0..1..1..0....0..0..0..0..0
..1..1..0..0..0....0..0..0..0..0....0..0..1..1..0....0..0..0..0..0
		

Crossrefs

Formula

Empirical: a(n) = a(n-1) +9*a(n-2) -9*a(n-3) -36*a(n-4) +36*a(n-5) +84*a(n-6) -84*a(n-7) -126*a(n-8) +126*a(n-9) +126*a(n-10) -126*a(n-11) -84*a(n-12) +84*a(n-13) +36*a(n-14) -36*a(n-15) -9*a(n-16) +9*a(n-17) +a(n-18) -a(n-19)

A263796 Number of (n+1)X(5+1) 0..1 arrays with each row and column divisible by 3, read as a binary number with top and left being the most significant bits, and rows and columns lexicographically nonincreasing.

Original entry on oeis.org

4, 4, 14, 17, 61, 130, 494, 1435, 4917, 13962, 41366, 107284, 280438, 666212, 1574783, 3468753, 7560914, 15618901, 31856173, 62297164, 120205886, 224230549, 412782291, 739028663, 1306513751, 2256420867, 3851037496, 6442700456
Offset: 1

Views

Author

R. H. Hardin, Oct 26 2015

Keywords

Comments

Column 5 of A263799

Examples

			Some solutions for n=5
..1..1..1..1..0..0....1..1..1..1..0..0....1..1..1..1..0..0....1..1..1..1..1..1
..1..1..1..1..0..0....1..1..0..0..1..1....1..1..0..0..0..0....1..1..1..1..1..1
..1..1..1..1..0..0....1..0..1..0..1..0....1..0..1..0..1..0....1..1..1..1..0..0
..1..1..1..1..0..0....1..0..0..1..0..0....1..0..0..1..1..1....1..1..1..1..0..0
..1..1..0..0..1..1....0..1..1..0..1..1....0..0..1..0..0..1....1..1..0..0..0..0
..1..1..0..0..1..1....0..1..0..0..1..0....0..0..0..0..0..0....1..1..0..0..0..0
		

Crossrefs

Formula

Empirical: a(n) = a(n-1) +18*a(n-2) -18*a(n-3) -153*a(n-4) +153*a(n-5) +816*a(n-6) -816*a(n-7) -3060*a(n-8) +3060*a(n-9) +8568*a(n-10) -8568*a(n-11) -18564*a(n-12) +18564*a(n-13) +31824*a(n-14) -31824*a(n-15) -43758*a(n-16) +43758*a(n-17) +48620*a(n-18) -48620*a(n-19) -43758*a(n-20) +43758*a(n-21) +31824*a(n-22) -31824*a(n-23) -18564*a(n-24) +18564*a(n-25) +8568*a(n-26) -8568*a(n-27) -3060*a(n-28) +3060*a(n-29) +816*a(n-30) -816*a(n-31) -153*a(n-32) +153*a(n-33) +18*a(n-34) -18*a(n-35) -a(n-36) +a(n-37)

A263797 Number of (n+1) X (6+1) 0..1 arrays with each row and column divisible by 3, read as a binary number with top and left being the most significant bits, and rows and columns lexicographically nonincreasing.

Original entry on oeis.org

4, 4, 14, 18, 130, 616, 4991, 30130, 185795, 1022105, 5241463, 25403916, 113461481, 487306269, 1945016957, 7506601812, 27247184895, 95846215581, 320539609724, 1040469247149, 3239110764205, 9802122015937, 28643481268593, 81494869102471
Offset: 1

Views

Author

R. H. Hardin, Oct 26 2015

Keywords

Examples

			Some solutions for n=5
..1..1..0..0..0..0..0....1..1..1..1..0..0..0....1..1..1..1..0..0..0
..1..1..0..0..0..0..0....1..1..0..0..1..1..0....1..1..1..1..0..0..0
..0..0..1..1..1..1..0....1..0..1..0..1..1..1....1..1..1..1..0..0..0
..0..0..1..1..1..1..0....1..0..0..1..0..0..0....1..1..1..1..0..0..0
..0..0..0..0..0..0..0....0..1..1..0..0..0..0....1..1..0..0..0..0..0
..0..0..0..0..0..0..0....0..1..0..0..0..0..1....1..1..0..0..0..0..0
		

Crossrefs

Column 6 of A263799.

Formula

Empirical recurrence of order 83 (see link above)

A263798 Number of (n+1)X(7+1) 0..1 arrays with each row and column divisible by 3, read as a binary number with top and left being the most significant bits, and rows and columns lexicographically nonincreasing.

Original entry on oeis.org

5, 5, 25, 56, 494, 4991, 62904, 760671, 8468941, 90476206, 850301770, 7703098612, 62160939006, 482749236704, 3416830587073, 23238401292501, 146883022822593, 892090634118666, 5108443008090443, 28144017611172958, 147708619212786406
Offset: 1

Views

Author

R. H. Hardin, Oct 26 2015

Keywords

Comments

Column 7 of A263799

Examples

			Some solutions for n=5
..1..1..1..1..0..0..0..0....1..1..1..1..0..0..0..0....1..1..1..1..1..1..0..0
..1..1..0..0..1..1..0..0....1..1..0..0..1..1..0..0....1..1..1..1..0..0..1..1
..1..0..1..0..1..1..1..0....1..0..1..0..1..0..1..1....1..1..0..0..1..1..1..1
..1..0..0..1..0..0..0..0....1..0..0..1..0..0..1..1....1..1..0..0..0..0..0..0
..0..1..1..0..1..0..0..1....0..0..1..0..0..1..1..1....0..0..0..0..1..1..1..1
..0..1..0..0..1..0..1..1....0..0..0..0..0..0..1..1....0..0..0..0..0..0..1..1
		

Crossrefs

A263793 Number of (n+1) X (n+1) 0..1 arrays with each row and column divisible by 3, read as a binary number with top and left being the most significant bits, and rows and columns lexicographically nonincreasing.

Original entry on oeis.org

2, 2, 7, 7, 61, 616, 62904, 20141827
Offset: 1

Views

Author

R. H. Hardin, Oct 26 2015

Keywords

Comments

Diagonal of A263799.

Examples

			Some solutions for n=5:
..1..1..1..1..0..0....1..1..1..1..0..0....1..1..1..1..0..0....1..1..1..1..0..0
..1..1..1..1..0..0....1..1..0..0..1..1....1..1..1..1..0..0....1..1..1..1..0..0
..1..1..0..0..1..1....1..0..1..0..1..0....0..0..0..0..1..1....1..1..0..0..0..0
..1..1..0..0..1..1....1..0..0..1..0..0....0..0..0..0..1..1....1..1..0..0..0..0
..0..0..0..0..1..1....0..0..1..0..0..1....0..0..0..0..1..1....1..0..1..0..1..0
..0..0..0..0..1..1....0..0..0..0..0..0....0..0..0..0..1..1....1..0..1..0..1..0
		

Crossrefs

Cf. A263799.
Showing 1-6 of 6 results.