cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263801 Partial sums of odd double factorials (A001147) with alternating signs.

This page as a plain text file.
%I A263801 #17 Feb 16 2025 08:33:27
%S A263801 1,0,3,-12,93,-852,9543,-125592,1901433,-32557992,622171083,
%T A263801 -13127139492,303107003733,-7602746576892,205855300099983,
%U A263801 -5984428053529392,185914355908981233,-6146745514853869392,215496349961845902483,-7985298182676045656892
%N A263801 Partial sums of odd double factorials (A001147) with alternating signs.
%H A263801 G. C. Greubel, <a href="/A263801/b263801.txt">Table of n, a(n) for n = 0..400</a>
%H A263801 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/DoubleFactorial.html">Double Factorial</a>.
%H A263801 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/IncompleteGammaFunction.html">Incomplete Gamma Function</a>.
%H A263801 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/Erf.html">Erf</a>.
%F A263801 a(n) = Sum_{k=0..n} (-1)^k*(2*k-1)!!.
%F A263801 a(n) = (sqrt(Pi)*erfc(1/sqrt(2))-Gamma(-n-1/2, 1/2)*(2*n+1)!!/(-2)^(n+1))*exp(1/2)/sqrt(2), where Gamma(a, x) is the upper incomplete Gamma function.
%F A263801 E.g.f.: 1/sqrt(2*x+1)+sqrt(Pi/2)*exp(x+1/2)*(erf(sqrt(x+1/2))-erf(1/sqrt(2))).
%F A263801 Recurrence: a(0) = 1, a(1) = 0, a(n+2) = (2*n+3)*a(n)-(2*n+2)*a(n+1).
%F A263801 0 = a(n)*(-2*a(n+1) + a(n+2) + a(n+3)) + a(n+1)*(+3*a(n+1) - 3*a(n+2) - a(n+3)) + a(n+2)*(+a(n+2)) if n>=0. - _Michael Somos_, Oct 30 2015
%e A263801 For n = 4, a(4) = Sum_{k=0..4} (-1)^k*(2*k-1)!! = (-1)!! - 1!! + 3!! - 5!! + 7!! = 1 - 1 + 3 - 15 + 105 = 93.
%e A263801 G.f. = 1 + 3*x^2 - 12*x^3 + 93*x^4 - 852*x^5 + 9543*x^6 - 125592*x^7 + ...
%t A263801 Table[Sum[(-1)^k (2k-1)!!, {k, 0, n}], {n, 0, 20}]
%t A263801 Round@Table[(Sqrt[Pi] Erfc[1/Sqrt[2]] - Gamma[-n-1/2, 1/2] (2n+1)!!/(-2)^(n+1)) Sqrt[E/2], {n, 0, 20}]
%o A263801 (PARI) for(n=0,50, print1(sum(k=0,n, (-1)^k*(2*k)!/(2^k*k!)), ", ")) \\ _G. C. Greubel_, Apr 08 2017
%Y A263801 Cf. A001147, A076795.
%K A263801 sign
%O A263801 0,3
%A A263801 _Vladimir Reshetnikov_, Oct 26 2015