This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A263803 #16 Mar 25 2016 05:59:46 %S A263803 2,3,6,31,258,10294 %N A263803 Number of conjugacy classes of independent sets of permutations of n points, i.e., subsets of the symmetric group of degree n up to relabeling the points with the property that none of the elements in the subset can be generated by the rest of the subset. %o A263803 (GAP) %o A263803 # GAP 4.7 http://www.gap-system.org %o A263803 # brute-force enumeration of conjugacy classes of %o A263803 # independent sets in the symmetric group, %o A263803 # inefficient (~4GB RAM needed, n=4 can take hours), %o A263803 # but short, readable, self-contained %o A263803 # higher terms can be calculated by the SubSemi package %o A263803 # https://github.com/egri-nagy/subsemi %o A263803 IsIndependentSet := function(A) %o A263803 return IsDuplicateFreeList(A) and %o A263803 (Size(A)<2 or %o A263803 ForAll(A,x-> not (x in Group(Difference(A,[x]))))); %o A263803 end; %o A263803 # we choose the minimal element (in lexicographic order) as the %o A263803 # representative of the equivalence class %o A263803 Rep := function(A, Sn) %o A263803 return Minimum(Set(Sn, g->Set(A, x->x^g))); %o A263803 end; %o A263803 CalcIndependentConjugacyClasses := function(n) %o A263803 local Sn, allsubsets, iss, reps; %o A263803 Sn := SymmetricGroup(IsPermGroup,n); %o A263803 allsubsets := Combinations(AsList(Sn)); %o A263803 iss := Filtered(allsubsets, IsIndependentSet); %o A263803 reps := Set(iss, x->Rep(x,Sn)); %o A263803 Print(Size(iss)," ", Size(reps),"\n"); %o A263803 end; %o A263803 for i in [1..4] do CalcIndependentConjugacyClasses(i); od; %Y A263803 Cf. A263802. %K A263803 nonn,hard,more %O A263803 1,1 %A A263803 _Attila Egri-Nagy_, Oct 27 2015