This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A263828 #16 Oct 10 2018 03:26:47 %S A263828 1,4,5,10,7,20,9,22,18,28,13,50,15,36,35,46,19,72,21,70,45,52,25,110, %T A263828 38,60,58,90,31,140,33,94,65,76,63,180,39,84,75,154,43,180,45,130,126, %U A263828 100,49,230,66,152,95,150,55,232,91,198,105,124,61 %N A263828 The number c_{P c pi_1(B_1)}(n) of the first amphicosm n-coverings over the first amphicosm. %H A263828 Gheorghe Coserea, <a href="/A263828/b263828.txt">Table of n, a(n) for n = 1..20000</a> %H A263828 G. Chelnokov, M. Deryagina, A. Mednykh, <a href="http://arxiv.org/abs/1502.01528">On the Coverings of Amphicosms; Revised title: On the coverings of Euclidian manifolds B_1 and B_2</a>, arXiv preprint arXiv:1502.01528 [math.AT], 2015. %t A263828 a[n_] := Sum[(3/2 + 1/2 (-1)^Mod[d, 2]) DivisorSigma[1, n/d], {d, Divisors[ n]}] - If[OddQ[n], 0, Sum[(3/2 + 1/2 (-1)^Mod[d, 2]) DivisorSigma[1, n/(2 d)], {d, Divisors[n/2]}]]; %t A263828 Array[a, 59] (* _Jean-François Alcover_, Oct 10 2018, after _Gheorghe Coserea_ *) %o A263828 (PARI) %o A263828 a(n) = { %o A263828 sumdiv(n, d, (3/2 + 1/2*(-1)^(d%2)) * sigma(n/d)) - %o A263828 if (n%2, 0, sumdiv(n\2, d, (3/2 + 1/2*(-1)^(d%2))*sigma(n\(2*d)))) %o A263828 }; %o A263828 vector(59, n, a(n)) \\ _Gheorghe Coserea_, May 04 2016 %Y A263828 Cf. A263825-A263830, A263832. %K A263828 nonn %O A263828 1,2 %A A263828 _N. J. A. Sloane_, Oct 28 2015 %E A263828 More terms from _Gheorghe Coserea_, May 04 2016