This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A263830 #16 Sep 16 2018 17:17:26 %S A263830 1,5,9,23,19,53,33,93,74,119,73,255,99,213,219,363,163,482,201,581, %T A263830 393,485,289,1085,422,663,634,1047,451,1463,513,1417,897,1103,915, %U A263830 2374,723,1365,1227,2511,883,2661,969,2399,2078,1973,1153,4419 %N A263830 The number c_{Z^3,pi_1(B_2)}(2n) of 3-torus 2n-coverings over the second amphicosm. %H A263830 Gheorghe Coserea, <a href="/A263830/b263830.txt">Table of n, a(n) for n = 1..20000</a> %H A263830 G. Chelnokov, M. Deryagina, A. Mednykh, <a href="http://arxiv.org/abs/1502.01528">On the Coverings of Amphicosms; Revised title: On the coverings of Euclidian manifolds B_1 and B_2</a>, arXiv preprint arXiv:1502.01528 [math.AT], 2015. %t A263830 a[n_] := 1/2 Sum[Sum[(d^2 + 3/2 + 1/2 (-1)^Mod[d, 2] + (-1)^Mod[Quotient[n, d m], 2] + (-1)^Mod[d+Quotient[n, d m], 2])m, {m, Divisors[Quotient[n, d] ]}], {d, Divisors[n]}]; %t A263830 Array[a, 48] (* _Jean-François Alcover_, Sep 16 2018, after _Gheorghe Coserea_ *) %o A263830 (PARI) %o A263830 a(n) = { %o A263830 1/2 * sumdiv(n, d, sumdiv(n\d, m, %o A263830 (sqr(d) + 3/2 + 1/2*(-1)^(d%2) + (-1)^((n\(d*m))%2) + %o A263830 (-1)^((d + n\(d*m))%2)) * m)); %o A263830 }; %o A263830 vector(48, n, a(n)) \\ _Gheorghe Coserea_, May 05 2016 %Y A263830 Cf. A263825-A263830, A263832. %K A263830 nonn %O A263830 1,2 %A A263830 _N. J. A. Sloane_, Oct 28 2015 %E A263830 More terms from _Gheorghe Coserea_, May 05 2016