This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A263832 #24 Dec 01 2018 19:56:32 %S A263832 1,0,5,2,7,0,9,6,18,0,13,10,15,0,35,14,19,0,21,14,45,0,25,30,38,0,58, %T A263832 18,31,0,33,30,65,0,63,36,39,0,75,42,43,0,45,26,126,0,49,70,66,0,95, %U A263832 30,55,0,91,54,105,0,61,70,63,0,162,62,105,0,69 %N A263832 The number c_{Cc,pi_1(B_2)}(n) of the second amphicosm n-coverings over the second amphicosm. %H A263832 Gheorghe Coserea, <a href="/A263832/b263832.txt">Table of n, a(n) for n = 1..20000</a> %H A263832 G. Chelnokov, M. Deryagina, A. Mednykh, <a href="http://arxiv.org/abs/1502.01528">On the Coverings of Amphicosms; Revised title: On the coverings of Euclidian manifolds B_1 and B_2</a>, arXiv preprint arXiv:1502.01528 [math.AT], 2015. %H A263832 G. Chelnokov, M. Deryagina and A. Mednykh, <a href="https://doi.org/10.1080/00927872.2016.1222396">On the coverings of Euclidean manifolds B_1 and B_2</a>, Communications in Algebra, Vol. 45, No. 4 (2017), 1558-1576. %t A263832 sigma[n_] := DivisorSigma[1, n]; q = Quotient; %t A263832 a[n_] := Switch[Mod[n, 4], 0, Sum[sigma[q[n, 2d]] - sigma[q[n, 4d]], {d, Divisors[q[n, 4]]}], 2, 0, 1|3, Sum[sigma[d], {d, Divisors[n]}]]; %t A263832 Array[a, 70] (* _Jean-François Alcover_, Dec 01 2018, after _Gheorghe Coserea_ *) %o A263832 (PARI) %o A263832 A007429(n) = sumdiv(n, d, sigma(d)); %o A263832 a(n) = { %o A263832 if (n%2, A007429(n), if (n%4, 0, %o A263832 sumdiv(n\4, d, sigma(n\(2*d)) - sigma(n\(4*d))))); %o A263832 }; %o A263832 vector(67, n, a(n)) \\ _Gheorghe Coserea_, May 05 2016 %Y A263832 Cf. A263825, A263826, A263827, A263828, A263829, A263830, A263831. %K A263832 nonn %O A263832 1,3 %A A263832 _N. J. A. Sloane_, Oct 28 2015 %E A263832 More terms from _Gheorghe Coserea_, May 05 2016