This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A263837 #37 Jun 06 2024 12:00:34 %S A263837 1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,19,21,22,23,25,26,27,28,29,31, %T A263837 32,33,34,35,37,38,39,41,43,44,45,46,47,49,50,51,52,53,55,57,58,59,61, %U A263837 62,63,64,65,67,68,69,71,73,74,75,76,77,79,81,82,83,85,86,87,89,91,92,93,94,95,97,98,99 %N A263837 Non-abundant numbers (or nonabundant numbers): complement of A005101; numbers k for which sigma(k) <= 2*k. %C A263837 For all n, A003961(a(n)) is in A005100. - _Antti Karttunen_, Aug 28 2020 %H A263837 Reinhard Zumkeller, <a href="/A263837/b263837.txt">Table of n, a(n) for n = 1..10000</a> %H A263837 Paul Pollack and Carl Pomerance, <a href="https://doi.org/10.1090/btran/10">Some problems of Erdős on the sum-of-divisors function</a>, For Richard Guy on his 99th birthday: May his sequence be unbounded, Trans. Amer. Math. Soc. Ser. B 3 (2016), 1-26. %F A263837 A001065(a(n)) <= a(n). - _Reinhard Zumkeller_, Oct 31 2015 %p A263837 isA263837 := proc(n) %p A263837 if 2*n-numtheory[sigma](n) >=0 then %p A263837 true; %p A263837 else %p A263837 false; %p A263837 end if; %p A263837 end proc: %p A263837 A263837 := proc(n) %p A263837 option remember; %p A263837 local a; %p A263837 if n =1 then %p A263837 1; %p A263837 else %p A263837 for a from procname(n-1)+1 do %p A263837 if isA263837(a) then %p A263837 return a; %p A263837 end if; %p A263837 end do: %p A263837 end if; %p A263837 end proc: %p A263837 seq(A263837(n),n=1..100) ; # _R. J. Mathar_, Jun 06 2024 %t A263837 Select[Range[100], DivisorSigma[1, #] <= 2*# &] (* _Amiram Eldar_, Mar 14 2024 *) %o A263837 (Haskell) %o A263837 a263837 n = a263837_list !! (n-1) %o A263837 a263837_list = filter (\x -> a001065 x <= x) [1..] %o A263837 -- _Reinhard Zumkeller_, Oct 31 2015 %o A263837 (PARI) isok(n) = sigma(n) <= 2*n; \\ _Michel Marcus_, Dec 27 2015 %Y A263837 Union of A000396 and A005100. %Y A263837 Cf. A005101 (complement), A023196, A294935 (characteristic function). %Y A263837 Cf. A000203, A001065, A003961. %K A263837 nonn %O A263837 1,2 %A A263837 _N. J. A. Sloane_, Oct 30 2015 %E A263837 Additional description to the definition added by _Antti Karttunen_, Aug 28 2020