A263848 Irregular triangle read by rows: row n gives coefficients of basis polynomial {n,k} expressed in terms of binomial coefficients, high order terms first.
1, 1, -1, 1, 0, -1, 1, -1, 1, 1, 0, 0, -1, 2, 0, -1, 1, 2, -1, 0, 1, 1, -1, 1, -1, 1, 0, 0, 0, -1, 3, 0, 0, -1, 1, 5, 0, -1, 0, 1, 3, 0, -1, 1, -1, 3, -1, 0, 0, 1, 5, -2, 0, 1, -1, 3, -2, 1, 0, -1, 1, -1, 1, -1, 1, 1, 0, 0, 0, 0, -1, 4, 0, 0, 0, -1, 1, 9, 0, 0
Offset: 0
Examples
Triangle begins: 1, 1, -1, 1, 0, -1, 1, -1, 1, 1, 0, 0, -1, 2, 0, -1, 1, 2, -1, 0, 1, 1, -1, 1, -1, 1, 0, 0, 0, -1, 3, 0, 0, -1, 1, ...
Links
- Peter J. C. Moses, First 300 rows.
- Vladimir Shevelev, On the Basis Polynomials in the Theory of Permutations with Prescribed Up-Down Structure, arXiv|math.CO/0801.0072, 2007-2010. See Appendix.
- Vladimir Shevelev, The number of permutations with prescribed up-down structure as a function of two variables, INTEGERS, 12 (2012), #A1.
- V. Shevelev and J. Spilker, Up-down coefficients for permutations, Elemente der Mathematik, Vol. 68 (2013), no. 3, 115-127.
Extensions
More terms from Peter J. C. Moses, Dec 12 2015