This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A263873 #4 Oct 28 2015 11:50:30 %S A263873 2,2,2,3,2,3,3,3,3,3,4,3,7,3,4,4,4,7,7,4,4,5,4,14,7,14,4,5,5,5,14,16, %T A263873 16,14,5,5,6,5,25,17,61,17,25,5,6,6,6,25,41,93,93,41,25,6,6,7,6,41,48, %U A263873 494,379,494,48,41,6,7,7,7,41,113,975,2909,2909,975,113,41,7,7,8,7,63,141 %N A263873 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with each row and column divisible by 3, read as a binary number with top and left being the most significant bits, and rows and columns lexicographically nondecreasing. %C A263873 Table starts %C A263873 .2.2..3...3.....4......4........5.........5.........6..........6.........7 %C A263873 .2.2..3...3.....4......4........5.........5.........6..........6.........7 %C A263873 .3.3..7...7....14.....14.......25........25........41.........41........63 %C A263873 .3.3..7...7....16.....17.......41........48.......113........141.......303 %C A263873 .4.4.14..16....61.....93......494.......975......4917......10340.....41366 %C A263873 .4.4.14..17....93....379.....2909.....20374....121878.....785046...3811314 %C A263873 .5.5.25..41...494...2909....62904....525967...8468941...71260394.850301770 %C A263873 .5.5.25..48...975..20374...525967..16701495.329866231.8672875293 %C A263873 .6.6.41.113..4917.121878..8468941.329866231 %C A263873 .6.6.41.141.10340.785046.71260394 %H A263873 R. H. Hardin, <a href="/A263873/b263873.txt">Table of n, a(n) for n = 1..144</a> %F A263873 Empirical for column k: %F A263873 k=1: a(n) = a(n-1) +a(n-2) -a(n-3) %F A263873 k=2: a(n) = a(n-1) +a(n-2) -a(n-3) %F A263873 k=3: a(n) = a(n-1) +3*a(n-2) -3*a(n-3) -3*a(n-4) +3*a(n-5) +a(n-6) -a(n-7) %F A263873 k=4: [order 14] %F A263873 k=5: [order 37] %F A263873 k=6: [order 79] %e A263873 Some solutions for n=4 k=4 %e A263873 ..0..0..0..0..0....0..0..0..0..0....0..0..0..0..0....0..0..0..0..0 %e A263873 ..0..0..0..0..0....0..0..0..0..0....0..0..0..0..0....0..1..1..1..1 %e A263873 ..0..0..0..0..0....0..0..0..0..0....0..0..0..0..0....0..1..1..1..1 %e A263873 ..0..0..0..1..1....0..1..1..1..1....0..0..0..0..0....0..1..1..1..1 %e A263873 ..0..0..0..1..1....0..1..1..1..1....0..0..0..0..0....0..1..1..1..1 %Y A263873 Columns 1 and 2 are A004526(n+3). %Y A263873 Column 3 is A263794(n+1). %K A263873 nonn,tabl %O A263873 1,1 %A A263873 _R. H. Hardin_, Oct 28 2015