A263869
Number of (n+1) X (4+1) 0..1 arrays with each row and column divisible by 3, read as a binary number with top and left being the most significant bits, and rows and columns lexicographically nondecreasing.
Original entry on oeis.org
3, 3, 7, 7, 16, 17, 41, 48, 113, 141, 303, 387, 752, 962, 1713, 2175, 3607, 4531, 7095, 8811, 13168, 16171, 23257, 28262, 39365, 47373, 64223, 76599, 101472, 120036, 155873, 183005, 233547, 272307, 342247, 396511, 491664, 566277, 693769, 794716
Offset: 1
Some solutions for n=4:
..0..0..0..0..0....0..0..0..0..0....0..0..0..0..0....0..0..0..0..0
..0..0..0..0..0....0..0..0..1..1....0..0..0..0..0....0..0..0..1..1
..0..0..0..0..0....0..0..0..1..1....0..0..0..0..0....0..0..0..1..1
..0..1..1..1..1....0..1..1..1..1....0..0..0..0..0....0..0..0..1..1
..0..1..1..1..1....0..1..1..1..1....0..0..0..0..0....0..0..0..1..1
A263870
Number of (n+1)X(5+1) 0..1 arrays with each row and column divisible by 3, read as a binary number with top and left being the most significant bits, and rows and columns lexicographically nondecreasing.
Original entry on oeis.org
4, 4, 14, 16, 61, 93, 494, 975, 4917, 10340, 41366, 85816, 280438, 562456, 1574783, 3040270, 7560914, 14059280, 31856173, 57181978, 120205886, 208862596, 412782291, 696193791, 1306513751, 2144538358, 3851037496, 6166629823
Offset: 1
Some solutions for n=4
..0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0
..0..0..1..1..1..1....0..0..0..0..1..1....0..0..1..1..1..1....0..0..0..0..1..1
..0..0..1..1..1..1....0..0..0..0..1..1....0..0..1..1..1..1....0..0..0..0..1..1
..0..0..1..1..1..1....0..0..1..1..0..0....1..1..1..1..1..1....0..0..1..1..1..1
..0..0..1..1..1..1....0..0..1..1..0..0....1..1..1..1..1..1....0..0..1..1..1..1
A263871
Number of (n+1)X(6+1) 0..1 arrays with each row and column divisible by 3, read as a binary number with top and left being the most significant bits, and rows and columns lexicographically nondecreasing.
Original entry on oeis.org
4, 4, 14, 17, 93, 379, 2909, 20374, 121878, 785046, 3811314, 20729459, 86398810, 401508982, 1487808602, 6052744740, 20393912111, 74234335758, 230979488062, 765576270536, 2224840569660, 6807977828585, 18640043440258, 53237097603882
Offset: 1
Some solutions for n=4
..0..0..0..0..0..0..0....0..0..0..0..0..0..0....0..0..0..0..0..0..0
..0..0..0..0..0..0..0....0..0..0..1..1..1..1....0..0..0..0..0..1..1
..0..0..0..0..0..0..0....0..0..0..1..1..1..1....0..0..0..0..0..1..1
..0..1..1..1..1..1..1....0..1..1..0..0..1..1....0..0..0..0..0..1..1
..0..1..1..1..1..1..1....0..1..1..0..0..1..1....0..0..0..0..0..1..1
A263872
Number of (n+1)X(7+1) 0..1 arrays with each row and column divisible by 3, read as a binary number with top and left being the most significant bits, and rows and columns lexicographically nondecreasing.
Original entry on oeis.org
5, 5, 25, 41, 494, 2909, 62904, 525967, 8468941, 71260394, 850301770, 6589670154, 62160939006, 434482926964, 3416830587073, 21593530137906, 146883022822593, 846348872934578, 5108443008090443, 27076148532186899, 147708619212786406
Offset: 1
Some solutions for n=4
..0..0..0..0..0..0..0..0....0..0..0..0..0..0..0..0....0..0..0..0..0..0..0..0
..0..0..1..1..1..1..1..1....0..0..0..0..1..1..1..1....0..0..0..0..0..0..0..0
..0..0..1..1..1..1..1..1....0..0..0..0..1..1..1..1....0..0..0..0..0..0..0..0
..1..1..0..0..0..0..0..0....1..1..1..1..1..1..1..1....0..0..0..0..0..0..1..1
..1..1..0..0..0..0..0..0....1..1..1..1..1..1..1..1....0..0..0..0..0..0..1..1
A263868
Number of (n+1)X(n+1) 0..1 arrays with each row and column divisible by 3, read as a binary number with top and left being the most significant bits, and rows and columns lexicographically nondecreasing.
Original entry on oeis.org
2, 2, 7, 7, 61, 379, 62904, 16701495
Offset: 1
Some solutions for n=4
..0..0..0..0..0....0..0..0..0..0....0..0..0..0..0....0..0..0..0..0
..0..1..1..1..1....0..0..0..1..1....0..0..0..0..0....0..0..0..1..1
..0..1..1..1..1....0..0..0..1..1....0..0..0..0..0....0..0..0..1..1
..0..1..1..1..1....0..1..1..1..1....0..0..0..1..1....0..0..0..1..1
..0..1..1..1..1....0..1..1..1..1....0..0..0..1..1....0..0..0..1..1
Showing 1-5 of 5 results.
Comments