cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A263869 Number of (n+1) X (4+1) 0..1 arrays with each row and column divisible by 3, read as a binary number with top and left being the most significant bits, and rows and columns lexicographically nondecreasing.

Original entry on oeis.org

3, 3, 7, 7, 16, 17, 41, 48, 113, 141, 303, 387, 752, 962, 1713, 2175, 3607, 4531, 7095, 8811, 13168, 16171, 23257, 28262, 39365, 47373, 64223, 76599, 101472, 120036, 155873, 183005, 233547, 272307, 342247, 396511, 491664, 566277, 693769, 794716
Offset: 1

Views

Author

R. H. Hardin, Oct 28 2015

Keywords

Examples

			Some solutions for n=4:
..0..0..0..0..0....0..0..0..0..0....0..0..0..0..0....0..0..0..0..0
..0..0..0..0..0....0..0..0..1..1....0..0..0..0..0....0..0..0..1..1
..0..0..0..0..0....0..0..0..1..1....0..0..0..0..0....0..0..0..1..1
..0..1..1..1..1....0..1..1..1..1....0..0..0..0..0....0..0..0..1..1
..0..1..1..1..1....0..1..1..1..1....0..0..0..0..0....0..0..0..1..1
		

Crossrefs

Column 4 of A263873.

Formula

Empirical: a(n) = 2*a(n-1) + 5*a(n-2) - 12*a(n-3) - 9*a(n-4) + 30*a(n-5) + 5*a(n-6) - 40*a(n-7) + 5*a(n-8) + 30*a(n-9) - 9*a(n-10) - 12*a(n-11) + 5*a(n-12) + 2*a(n-13) - a(n-14).
Conjectures from Colin Barker, Jan 03 2019: (Start)
G.f.: x*(3 - 3*x - 14*x^2 + 14*x^3 + 30*x^4 - 29*x^5 - 31*x^6 + 31*x^7 + 20*x^8 - 20*x^9 - 7*x^10 + 7*x^11 + x^12 - x^13) / ((1 - x)^8*(1 + x)^6).
a(n) = (315*(2889-841*(-1)^n) + (537927 - 96327*(-1)^n)*n - 21*(-4723+755*(-1)^n)*n^2 - 7*(-1469 + 45*(-1)^n)*n^3 - 105*(3+5*(-1)^n)*n^4 - 7*(-29+9*(-1)^n)*n^5 + 42*n^6 + 2*n^7) / 645120.
(End)

A263870 Number of (n+1)X(5+1) 0..1 arrays with each row and column divisible by 3, read as a binary number with top and left being the most significant bits, and rows and columns lexicographically nondecreasing.

Original entry on oeis.org

4, 4, 14, 16, 61, 93, 494, 975, 4917, 10340, 41366, 85816, 280438, 562456, 1574783, 3040270, 7560914, 14059280, 31856173, 57181978, 120205886, 208862596, 412782291, 696193791, 1306513751, 2144538358, 3851037496, 6166629823
Offset: 1

Views

Author

R. H. Hardin, Oct 28 2015

Keywords

Comments

Column 5 of A263873.

Examples

			Some solutions for n=4
..0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0
..0..0..1..1..1..1....0..0..0..0..1..1....0..0..1..1..1..1....0..0..0..0..1..1
..0..0..1..1..1..1....0..0..0..0..1..1....0..0..1..1..1..1....0..0..0..0..1..1
..0..0..1..1..1..1....0..0..1..1..0..0....1..1..1..1..1..1....0..0..1..1..1..1
..0..0..1..1..1..1....0..0..1..1..0..0....1..1..1..1..1..1....0..0..1..1..1..1
		

Crossrefs

Cf. A263873.

Formula

Empirical: a(n) = a(n-1) +18*a(n-2) -18*a(n-3) -153*a(n-4) +153*a(n-5) +816*a(n-6) -816*a(n-7) -3060*a(n-8) +3060*a(n-9) +8568*a(n-10) -8568*a(n-11) -18564*a(n-12) +18564*a(n-13) +31824*a(n-14) -31824*a(n-15) -43758*a(n-16) +43758*a(n-17) +48620*a(n-18) -48620*a(n-19) -43758*a(n-20) +43758*a(n-21) +31824*a(n-22) -31824*a(n-23) -18564*a(n-24) +18564*a(n-25) +8568*a(n-26) -8568*a(n-27) -3060*a(n-28) +3060*a(n-29) +816*a(n-30) -816*a(n-31) -153*a(n-32) +153*a(n-33) +18*a(n-34) -18*a(n-35) -a(n-36) +a(n-37)

A263871 Number of (n+1)X(6+1) 0..1 arrays with each row and column divisible by 3, read as a binary number with top and left being the most significant bits, and rows and columns lexicographically nondecreasing.

Original entry on oeis.org

4, 4, 14, 17, 93, 379, 2909, 20374, 121878, 785046, 3811314, 20729459, 86398810, 401508982, 1487808602, 6052744740, 20393912111, 74234335758, 230979488062, 765576270536, 2224840569660, 6807977828585, 18640043440258, 53237097603882
Offset: 1

Views

Author

R. H. Hardin, Oct 28 2015

Keywords

Comments

Column 6 of A263873.

Examples

			Some solutions for n=4
..0..0..0..0..0..0..0....0..0..0..0..0..0..0....0..0..0..0..0..0..0
..0..0..0..0..0..0..0....0..0..0..1..1..1..1....0..0..0..0..0..1..1
..0..0..0..0..0..0..0....0..0..0..1..1..1..1....0..0..0..0..0..1..1
..0..1..1..1..1..1..1....0..1..1..0..0..1..1....0..0..0..0..0..1..1
..0..1..1..1..1..1..1....0..1..1..0..0..1..1....0..0..0..0..0..1..1
		

Crossrefs

Cf. A263873.

Formula

Empirical recurrence of order 79 (see link above)

A263872 Number of (n+1)X(7+1) 0..1 arrays with each row and column divisible by 3, read as a binary number with top and left being the most significant bits, and rows and columns lexicographically nondecreasing.

Original entry on oeis.org

5, 5, 25, 41, 494, 2909, 62904, 525967, 8468941, 71260394, 850301770, 6589670154, 62160939006, 434482926964, 3416830587073, 21593530137906, 146883022822593, 846348872934578, 5108443008090443, 27076148532186899, 147708619212786406
Offset: 1

Views

Author

R. H. Hardin, Oct 28 2015

Keywords

Comments

Column 7 of A263873.

Examples

			Some solutions for n=4
..0..0..0..0..0..0..0..0....0..0..0..0..0..0..0..0....0..0..0..0..0..0..0..0
..0..0..1..1..1..1..1..1....0..0..0..0..1..1..1..1....0..0..0..0..0..0..0..0
..0..0..1..1..1..1..1..1....0..0..0..0..1..1..1..1....0..0..0..0..0..0..0..0
..1..1..0..0..0..0..0..0....1..1..1..1..1..1..1..1....0..0..0..0..0..0..1..1
..1..1..0..0..0..0..0..0....1..1..1..1..1..1..1..1....0..0..0..0..0..0..1..1
		

Crossrefs

Cf. A263873.

A263868 Number of (n+1)X(n+1) 0..1 arrays with each row and column divisible by 3, read as a binary number with top and left being the most significant bits, and rows and columns lexicographically nondecreasing.

Original entry on oeis.org

2, 2, 7, 7, 61, 379, 62904, 16701495
Offset: 1

Views

Author

R. H. Hardin, Oct 28 2015

Keywords

Comments

Diagonal of A263873.

Examples

			Some solutions for n=4
..0..0..0..0..0....0..0..0..0..0....0..0..0..0..0....0..0..0..0..0
..0..1..1..1..1....0..0..0..1..1....0..0..0..0..0....0..0..0..1..1
..0..1..1..1..1....0..0..0..1..1....0..0..0..0..0....0..0..0..1..1
..0..1..1..1..1....0..1..1..1..1....0..0..0..1..1....0..0..0..1..1
..0..1..1..1..1....0..1..1..1..1....0..0..0..1..1....0..0..0..1..1
		

Crossrefs

Cf. A263873.
Showing 1-5 of 5 results.