cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263879 Length k of the longest chain of primes p_1, p_2, ..., p_k such that p_1 is the n-th prime and p_{i+1} equals 2*p_i + 1 or 2*p_i - 1 for all i < k, the +/- sign depending on i.

Original entry on oeis.org

6, 5, 4, 2, 3, 1, 1, 3, 2, 2, 2, 2, 3, 1, 1, 2, 1, 1, 1, 1, 1, 3, 2, 6, 2, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 5, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 1, 3, 2, 1, 1, 1, 4, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 4, 1, 1, 1
Offset: 1

Views

Author

Jonathan Sondow, Oct 28 2015

Keywords

Comments

If the +/- signs are all + or all -, then p_1, p_2, ..., p_k is a Cunningham chain of the first or second kind, respectively.
If p_1 > 3, then the +/- signs must be all + or all -, because if e = +1 or -1, then one of p, 2*p + e, 2*(2*p + e) - e is divisible by 3; see Löh (1989), p. 751.
Cunningham chains of the first and second kinds of length > 1 cannot begin with the same prime p > 3, because one of the numbers p, 2*p-1, 2*p+1 is divisible by 3.

Examples

			2, 3, 5, 11, 23, 47 is the longest such chain of primes starting with 2. Their indices are 1, 2, 3, 5, 9, 15, respectively, so a(1) = 6, a(2) = 5, a(3) = 4, a(5) = 3, a(9) = 2, and a(15) = 1.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, A7.

Crossrefs

Programs

  • Maple
    f:= proc(n) option remember; local x;
      if n mod 3 = 1 then x:= 2*n-1 else x:= 2*n+1 fi;
      if isprime(x) then 1 + procname(x) else 1 fi;
    end proc:
    f(2):= 6: f(3):= 5:
    map(f, [seq(ithprime(i),i=1..100)]); # Robert Israel, Jul 04 2023
  • Mathematica
    A263879 = Join[{6, 5},
      Table[p = Prime[n]; cnt = 1;
       While[PrimeQ[2*p + 1] || PrimeQ[2*p - 1],
        cnt++ && If[PrimeQ[2*p + 1], p = 2*p + 1, p = 2*p - 1 ]];
       cnt, {n, 3, 100}]]
  • Python
    from sympy import prime, isprime
    def A263879(n):
        if n <= 2: return 7-n
        p, c = prime(n), 1
        while isprime(p:=(p<<1)+(-1 if p%3==1 else 1)):
            c += 1
        return c # Chai Wah Wu, Jul 07 2023

Formula

a(n) = max(A181697(n), A181715(n)) for n > 2.
a(n) < prime(n) for n > 2; see Löh (1989), p. 751.