cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263883 Ivanov's number a(n) = i*(n+2-i) where i = min{j > 0 | j*(j+1) >= 2*(n-1)}.

Original entry on oeis.org

1, 2, 3, 6, 8, 12, 15, 18, 24, 28, 32, 36, 45, 50, 55, 60, 65, 78, 84, 90, 96, 102, 108, 126, 133, 140, 147, 154, 161, 168, 192, 200, 208, 216, 224, 232, 240, 248, 279, 288, 297, 306, 315, 324, 333, 342, 351, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 528, 539, 550, 561, 572, 583, 594, 605, 616, 627, 638, 696, 708, 720
Offset: 0

Views

Author

Jonathan Sondow, Nov 30 2015

Keywords

Comments

The maximum number of regions into which n lines can divide the plane is A000124(n) = n(n+1)/2 + 1.
Let m(n) be the least number such that every integer in the interval [m(n),n(n+1)/2 + 1] occurs as the number of regions into which n lines can divide the plane. Ivanov (2010, Theorem, p. 888) proved the upper bound m(n) <= a(n).
Ivanov's upper bound is sharp, i.e., m(n) = a(n), at least for n <= 6. For example, the numbers of regions into which some configuration of 6 lines divides the plane are 7, 12, 15, 16, 17, 18, 19, 20, 21, 22, 22 (see A177862), so m(6) = 15 = a(6).
Subsequence of A177862.

Examples

			If n = 6, then i = min{j > 0 | j*(j+1) >= 2*(6-1) = 10} = 3, so a(6) = 3*(6+2-3) = 15.
		

Crossrefs

Programs

  • Mathematica
    i[n_] := (j = 1; While[j (j + 1) < 2 (n - 1), j++]; j); Table[i[n] (n + 2 - i[n]), {n, 0, 70}]
  • PARI
    a(n)=if(n<3, n+1, my(i=(sqrtint(8*n-8)+1)\2); (n+2-i)*i) \\ Charles R Greathouse IV, Nov 12 2016