A263883 Ivanov's number a(n) = i*(n+2-i) where i = min{j > 0 | j*(j+1) >= 2*(n-1)}.
1, 2, 3, 6, 8, 12, 15, 18, 24, 28, 32, 36, 45, 50, 55, 60, 65, 78, 84, 90, 96, 102, 108, 126, 133, 140, 147, 154, 161, 168, 192, 200, 208, 216, 224, 232, 240, 248, 279, 288, 297, 306, 315, 324, 333, 342, 351, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 528, 539, 550, 561, 572, 583, 594, 605, 616, 627, 638, 696, 708, 720
Offset: 0
Examples
If n = 6, then i = min{j > 0 | j*(j+1) >= 2*(6-1) = 10} = 3, so a(6) = 3*(6+2-3) = 15.
Links
- O. A. Ivanov, Making Mathematics Come to Life: A Guide for Teachers and Students, American Mathematical Society, Providence, RI, 2009; see p. 11.
- O. A. Ivanov, On the number of regions into which n straight lines divide the plane, Amer. Math. Monthly, 117 (2010), 881-888.
Programs
-
Mathematica
i[n_] := (j = 1; While[j (j + 1) < 2 (n - 1), j++]; j); Table[i[n] (n + 2 - i[n]), {n, 0, 70}]
-
PARI
a(n)=if(n<3, n+1, my(i=(sqrtint(8*n-8)+1)\2); (n+2-i)*i) \\ Charles R Greathouse IV, Nov 12 2016
Comments