This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A263931 #46 Dec 20 2024 09:24:46 %S A263931 1,1,2,4,2,36,12,24,90,20,4,168,28,1400,5400,720,90,5940,23100,46200, %T A263931 180180,17160,1560,140400,11700,45864,179928,13328,52360,5969040, %U A263931 397936,795872,3133746,12345060,726180,2863224,159068,318136,1255800,4958800,247940 %N A263931 a(n) = binomial(2*n, n) / Product(p prime | n < p <= 2*n). %C A263931 The highest exponent in the prime factorization of a(n) is A263922(n), n>=2. %C A263931 a(n) is even for n>=2. %C A263931 By the Erdős squarefree conjecture, proved in 1996, no a(n) with n >= 5 is squarefree. - _Robert FERREOL_, Sep 06 2022 %C A263931 Conjecture: n=5 is the only n for which a(n)^2 > binomial(2*n,n). - _Richard Peterson_, Dec 18 2024 %H A263931 David A. Corneth, <a href="/A263931/b263931.txt">Table of n, a(n) for n = 0..5806</a> (terms < 10^1000) %H A263931 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ErdosSquarefreeConjecture.html">Erdős Squarefree Conjecture</a>. %F A263931 a(n) = A000984(n)/A261130(n). %p A263931 a := n -> binomial(2*n,n)/convert(select(isprime, {$n+1..2*n}),`*`): %p A263931 seq(a(n), n=0..40); %o A263931 (PARI) %o A263931 a(n) = { my(res = 1); forprime(p = 2, n, res*= p^(val(2*n, p) - 2*val(n, p))); forprime(p = n + 1, 2*n, res*= p^(val(2*n, p) - 2*val(n, p) - 1)); res } %o A263931 val(n, p) = my(r=0); while(n, r+=n\=p);r \\ _David A. Corneth_, Apr 03 2021 %o A263931 (Python) %o A263931 from math import comb %o A263931 from sympy import primorial %o A263931 def A263931(n): return comb(m:=n<<1,n)*primorial(n,nth=False)//primorial(m,nth=False) if n else 1 # _Chai Wah Wu_, Sep 07 2022 %Y A263931 Cf. A000984, A261130, A263922, A356637. %K A263931 nonn %O A263931 0,3 %A A263931 _Peter Luschny_, Oct 31 2015