This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A263943 #7 Jan 11 2017 09:51:55 %S A263943 7,119,4564,32900,1161895,8359127,295119412,2123188004,74959171399, %T A263943 539281396535,19039334418580,136975351534532,4835915983150567, %U A263943 34791200008377239,1228303620385828084,8836827826776286820,311984283662017185415,2244519476801168477687 %N A263943 Positive integers n such that (n+21)^3 - n^3 is a square. %H A263943 Colin Barker, <a href="/A263943/b263943.txt">Table of n, a(n) for n = 1..831</a> %H A263943 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,254,-254,-1,1). %F A263943 a(n) = a(n-1)+254*a(n-2)-254*a(n-3)-a(n-4)+a(n-5) for n>5. %F A263943 G.f.: 7*x*(4*x^4+16*x^3-381*x^2-16*x-1) / ((x-1)*(x^2-16*x+1)*(x^2+16*x+1)). %e A263943 7 is in the sequence because (7+21)^3 - 7^3 = 147^2. %t A263943 LinearRecurrence[{1,254,-254,-1,1},{7,119,4564,32900,1161895},20] (* _Harvey P. Dale_, Jan 11 2017 *) %o A263943 (PARI) Vec(7*x*(4*x^4+16*x^3-381*x^2-16*x-1)/((x-1)*(x^2-16*x+1)*(x^2+16*x+1)) + O(x^30)) %Y A263943 Cf. A263942 (4), A263944 (28), A263945 (39), A263946 (52), A263947 (57), A263948 (61), A263949 (84) where the parenthesized number is k in the expression (n+k)^3 - n^3. %K A263943 nonn,easy %O A263943 1,1 %A A263943 _Colin Barker_, Oct 30 2015