cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263978 Least prime p such that n^2 + p^2 is prime, or 0 if none.

Original entry on oeis.org

2, 3, 2, 5, 2, 5, 2, 3, 0, 3, 0, 7, 2, 11, 2, 5, 2, 5, 0, 3, 0, 5, 0, 5, 0, 5, 2, 5, 0, 11, 0, 3, 2, 5, 2, 5, 2, 3, 0, 3, 0, 5, 0, 19, 2, 5, 2, 13, 0, 7, 0, 3, 0, 11, 0, 11, 2, 3, 0, 13, 0, 3, 0, 11, 2, 29, 2, 5, 0, 3, 0, 5, 2, 5, 0, 5, 0, 7, 0, 7, 0, 3, 0, 11, 2, 11, 2, 3, 0, 11, 0, 7, 0, 5, 2, 5, 2, 3, 0, 3
Offset: 1

Views

Author

Keywords

Comments

When n is odd, n^2 + p^2 is composite for all odd primes p, so a(n) = 2 or 0 according as n^2 + 2^2 is prime or not.
The locations of the zeros are in A263722.
The location of the first occurrence of prime(n) is A263466(n).

Examples

			a(1) = 2 since 1^2 + 2^2 = 5 is prime.
a(2) = 3 since 2^2 + 2^2 = 8 is not prime but 2^2 + 3^2 = 13 is prime.
a(9) = 0 since 9^2 + 2^2 = 85 is not prime.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := If[OddQ[n] && ! PrimeQ[n^2 + 4], 0,
      Block[{p = 2}, While[! PrimeQ[n^2 + p^2] && p < 1500, p = NextPrime@p];
       p]]; Array[f, 100]