cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263985 Triangle of signed Eulerian numbers on involutions, read by rows.

This page as a plain text file.
%I A263985 #9 Sep 26 2018 16:26:04
%S A263985 1,-1,1,-1,-2,1,1,-2,-2,1,1,6,0,-2,1,-1,3,14,2,-3,1,-1,-12,-15,12,-1,
%T A263985 -4,1,1,-4,-51,-76,4,-3,-4,1,1,20,67,-10,-80,30,3,-4,1,-1,5,137,517,
%U A263985 414,66,75,7,-5,1,-1,-30,-192,-140,721,588,-49,44,0,-6,1
%N A263985 Triangle of signed Eulerian numbers on involutions, read by rows.
%H A263985 M. Barnabei, F. Bonetti, M. Silimbani, <a href="http://puma.dimai.unifi.it/19_2_3/11.pdf">The signed Eulerian numbers on involutions</a>, PU. M. A. Vol. 19 (2008) pp. 117-126.
%H A263985 M. Barnabei, F. Bonetti, M. Silimbani, <a href="http://arxiv.org/abs/0803.2126">The signed Eulerian numbers on involutions</a>, arXiv:0803.2126 [math.CO], 2008.
%H A263985 J. Desarmenien and D. Foata, <a href="http://dx.doi.org/10.1016/0012-365X(92)90364-L">The signed Eulerian numbers</a>, Discrete Math. 99 (1992), no. 1-3, 49-58.
%F A263985 T(n, k) = Sum_{m=0..k+1} (-1)^(k-m+1)*C(n+1,k-m+1)*Sum_{j=0..floor(n/2)} (-1)^j*C(C(m+1,2)+j-1,j)*C(m,n-2*j);
%e A263985 Triangle begins:
%e A263985 1;
%e A263985 -1, 1;
%e A263985 -1, -2, 1;
%e A263985 1, -2, -2, 1;
%e A263985 1, 6, 0, -2, 1;
%e A263985 -1, 3, 14, 2, -3, 1;
%e A263985 -1, -12, -15, 12, -1, -4, 1;
%e A263985 ...
%t A263985 T[n_, k_] := Sum[(-1)^(k-m+1) Binomial[n+1, k-m+1] Sum[(-1)^j Binomial[ Binomial[m+1, 2]+j-1, j] Binomial[m, n-2j], {j, 0, n/2}], {m, 0, k+1}];
%t A263985 Table[T[n, k], {n, 1, 11}, {k, 0, n-1}] // Flatten (* _Jean-François Alcover_, Sep 26 2018 *)
%o A263985 (PARI) T(n, k) = sum(m=0, k+1, (-1)^(k-m+1)*binomial(n+1,k-m+1)*sum(j=0,n\2, (-1)^j*binomial(binomial(m+1,2)+j-1,j)*binomial(m,n-2*j)));
%Y A263985 Cf. A049061.
%K A263985 sign,tabl
%O A263985 1,5
%A A263985 _Michel Marcus_, Oct 31 2015