This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A264008 #15 Jan 04 2018 21:04:06 %S A264008 6,12,25,56,110,91,153,342,552,406,930,703,820,1892,752,1431,3422,915, %T A264008 4556,4970,2701,6162,6972,979,4753,5050,10712,3852,2943,2147,16256, %U A264008 17030,9453,6394,5513,7550,12403,26732,28056,15051,31862,16290,36290,18721,19503,4378,8862,49952,51756,26106,3029,56882,28920 %N A264008 Index of the smallest Fibonacci number divisible by prime(n)^2. %H A264008 Robert Israel, <a href="/A264008/b264008.txt">Table of n, a(n) for n = 1..3584</a> %F A264008 a(n) = prime(n)*A001602(n). %F A264008 a(n) = min{i: A001248(n) | A000045(i)} %p A264008 f:= proc(n) local p, phi,q,k,G,Fkm,Fk,M,W,m; %p A264008 p:= ithprime(n); %p A264008 if member(p mod 5, {1,4}) then %p A264008 phi:= rhs(op(msolve(x^2-x-1,p^2)[1])); %p A264008 q:= -1-phi mod p^2; %p A264008 return numtheory:-order(q,p^2); %p A264008 fi; %p A264008 G:= GF(p,2,alpha^2-alpha-1); %p A264008 q:= G:-ConvertIn(-1-alpha); %p A264008 k:= G:-order(q); %p A264008 Fkm:= combinat:-fibonacci(k-1) mod p^2; %p A264008 Fk:= combinat:-fibonacci(k) mod p^2; %p A264008 M:= <<Fkm, Fk>|<Fk,(Fkm+Fk mod p^2)>>; %p A264008 W:= <0,1>; %p A264008 for m from 1 do %p A264008 W:= M . W mod p^2; %p A264008 if W[1] = 0 then return(m*k) fi %p A264008 od: %p A264008 end proc: %p A264008 f(3):= 25: %p A264008 map(f, [$1..100]); # _Robert Israel_, Jan 04 2018 %o A264008 (PARI) a(n) = if(n==3, 25, my(p=prime(n)); fordiv(p^2-1, d, if(fibonacci(d)%p==0, return(d*p)))); \\ _Altug Alkan_, Oct 31 2015 %Y A264008 Cf. A065069, A065106. %K A264008 nonn,look %O A264008 1,1 %A A264008 _R. J. Mathar_, Oct 31 2015