This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A264036 #22 Feb 16 2025 08:33:27 %S A264036 1,0,2,6,18,70,330,1694,9202,53334,332090,2212782,15638370,116365990, %T A264036 907975146,7413080510,63212284498,561747543414,5190343710746, %U A264036 49752410984526,493844719701186,5068209425457862,53705511911500746,586862875255860062,6605213319604075186 %N A264036 Stirling transform of A077957 (aerated powers of 2). %C A264036 a(n) is the inverse binomial transform of A264037 without the leading zero [1, 1, 3, 13, 55, ...]. %H A264036 Seiichi Manyama, <a href="/A264036/b264036.txt">Table of n, a(n) for n = 0..567</a> %H A264036 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/BellPolynomial.html">Bell Polynomial</a>. %F A264036 a(n) = Sum_{k=0..n} A077957(k)*Stirling2(n,k). %F A264036 a(n) = Sum_{k=0..floor(n/2)} 2^k*Stirling2(n,2*k). %F A264036 a(n) = (Bell_n(sqrt(2)) + Bell_n(-sqrt(2)))/2, where Bell_n(x) is n-th Bell polynomial. %F A264036 Bell_n(sqrt(2)) = a(n) + A264037(n)*sqrt(2). %F A264036 E.g.f.: cosh(sqrt(2)*(exp(x) - 1)). %F A264036 a(n) = 1; a(n) = 2 * Sum_{k=0..n-1} binomial(n-1, k) * A264037(k). - _Seiichi Manyama_, Oct 12 2022 %e A264036 G.f. = 1 + 2*x^2 + 6*x^3 + 18*x^4 + 70*x^5 + 330*x^6 + 1694*x^7 + 9202*x^8 + ... %t A264036 Table[(BellB[n, Sqrt[2]] + BellB[n, -Sqrt[2]])/2, {n, 0, 24}] %o A264036 (PARI) vector(100, n, n--; sum(k=0, n\2, 2^k*stirling(n, 2*k, 2))) \\ _Altug Alkan_, Nov 01 2015 %Y A264036 Column k=2 of A357681. %Y A264036 Cf. A065143, A077957, A264037. %K A264036 nonn %O A264036 0,3 %A A264036 _Vladimir Reshetnikov_, Nov 01 2015