cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264041 a(n) is the maximum number of diagonals that can be placed in an n X n grid made up of 1 X 1 unit squares when diagonals are placed in the unit squares in such a way that no two diagonals may cross or intersect at an endpoint.

This page as a plain text file.
%I A264041 #173 Aug 12 2025 20:31:09
%S A264041 1,3,6,10,16,21,29,36,46,55,68,78,93,105,122,136,156,171,193,210,234,
%T A264041 253,280,300,329,351,382,406,440,465,501,528
%N A264041 a(n) is the maximum number of diagonals that can be placed in an n X n grid made up of 1 X 1 unit squares when diagonals are placed in the unit squares in such a way that no two diagonals may cross or intersect at an endpoint.
%C A264041 In other words, largest number of nonintersecting vertex-disjoint diagonals / and \ that can be packed in an n X n grid.
%C A264041 / and \ cannot be adjacent horizontally or vertically.
%C A264041 Two \ cannot be adjacent on a northwest-to-southeast diagonal, two / cannot be adjacent on a southwest-to-northeast diagonal.
%C A264041 We also extended this to m X n grids, and have some limited results.
%C A264041 a(n) is the size of a maximum independent set in a graph with vertices (x,y,z), x=1..n, y=1..n, z=1..2, with edges joining (x,y,z) to (x,y,3-z), (x+1,y,3-z), and (x,y+1,3-z), (x,y,1) to (x+1,y-1,1) and (x,y,2) to (x+1,y+1,2). - _Robert Israel_, Nov 01 2015
%C A264041 From _Rob Pratt_, Nov 09 2015: (Start)
%C A264041 382 <= a(27) <= 383.
%C A264041 a(29) = 440.
%C A264041 For the number of optimal solutions see A264667. (End)
%C A264041 Conjecture: partial sums of A260307. - _Sean A. Irvine_, Jul 15 2022
%C A264041 From _Aleksandr V. Novozhilov_, Apr 01 2025: (Start)
%C A264041 a(27) = 382.
%C A264041 a(31) = 501.
%C A264041 566 <= a(33) <= 567.
%C A264041 636 <= a(35) <= 637. (End)
%C A264041 a(35) = 636, proved using SCIP ILP solver. - _Aleksandr V. Novozhilov_, Apr 09 2025
%H A264041 Peter Boyland, Gabriella Pintér, István Laukó, Ivan Roth, Jon E. Schoenfield, and Stephen Wasielewski, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL20/Pinter/pinter3.html">On the Maximum Number of Non-intersecting Diagonals in an Array</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.4.
%H A264041 Robert Israel, <a href="/A264041/a264041.m.txt">Code for MATLAB with CPLEX</a>
%H A264041 Robert Israel, <a href="/A264041/a264041_1.pdf">Optimal configurations for n=1..26</a>
%H A264041 Mathematics StackExchange, <a href="http://math.stackexchange.com/questions/339387/">How to solve 5x5 grid with 16 diagonals</a>
%H A264041 Aleksandr V. Novozhilov, <a href="/A264041/a264041_3.pdf">Optimal configurations for n=1..32</a>
%H A264041 NRICH, <a href="http://nrich.maths.org/6784">Distinct Diagonals</a>
%H A264041 Gabriella Pinter, <a href="/A264041/a264041_1.jpg">Figure used to illustrate proof of lower bound in n=6k-1 case, k=1,2,3</a>
%H A264041 Gabriella Pinter, <a href="/A264041/a264041_1.txt">Lower bound for the case n = 6k-1</a>, Oct 27 2015
%H A264041 Gabriella Pinter, <a href="/A264041/a264041_3.txt">Solution when there are an even number of rows of cells</a>
%H A264041 Yaohui Zhu, Kaiming Sun, Zhengdong Luo, and Lingfeng Wang, <a href="https://doi.org/10.1609/aaai.v39i2.32162">Progressive Self-Learning for Domain Adaptation on Symbolic Regression of Integer Sequences</a>, Proc. 39th AAAI Conf. Artif. Intel. (2025) Vol. 39, No. 1, 1692-1699. See p. 1698.
%F A264041 Theorem: a(2*n) = n*(2n+1) (the even-indexed terms among the triangular numbers A000217). More generally, for the 2k X m case, the optimal solution is k*(m+1). See third Pinter link for proof.
%F A264041 Theorem: a(6*n-1) >= n + 3*n*(6*n-1). See second Pinter link for proof.
%F A264041 Theorem: a(n) <= a(n-2) + 2*n.
%F A264041 Empirical g.f.: x*(1 + 2*x + 2*x^2 + 2*x^3 + 3*x^4 + x^5 + x^6) / ((1 - x)^3*(1 + x)^2*(1 - x + x^2)*(1 + x + x^2)). - _Robert Israel_, Nov 01 2015. Corrected by _Colin Barker_, Jan 31 2018
%F A264041 a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-6) - a(n-7) - a(n-8) + a(n-9) for n>9 (conjectured). - _Colin Barker_, Jan 31 2018
%F A264041 a(n) = n*(n+1)/2 for n even, floor(n*(n/2+2/3)+1/6) for n odd (conjecture). - _Bill McEachen_, Aug 11 2025
%e A264041 For a(2) = 3, an optimal configuration is
%e A264041    //
%e A264041    ./
%e A264041 (This is best seen using a fixed-width font. It is better to use "." instead of " " for blank squares, because " " tends to disappear.)
%e A264041 Note that the bottom left square can't have / because that would conflict with the / at top right, or \ because that would conflict with its horizontal and vertical neighbors.
%e A264041 For a(3) = 6, an optimal configuration is
%e A264041    ///
%e A264041    ../
%e A264041    /./
%e A264041 For a(4) = 10, an optimal configuration may be depicted, with the grid lines explicitly drawn, as
%e A264041    +-+-+-+-+
%e A264041    |/| |\|\|
%e A264041    +-+-+-+-+
%e A264041    |/| |\| |
%e A264041    +-+-+-+-+
%e A264041    |/| | | |
%e A264041    +-+-+-+-+
%e A264041    |/|/|/|/|
%e A264041    +-+-+-+-+
%e A264041 or, using "o" and "." to represent used and unused vertices, as
%e A264041    .-o-o-o-.
%e A264041    |/| |\|\|
%e A264041    o-o-o-o-o
%e A264041    |/| |\| |
%e A264041    o-o-.-o-.
%e A264041    |/| | | |
%e A264041    o-o-o-o-o
%e A264041    |/|/|/|/|
%e A264041    o-o-o-o-.
%e A264041 For a(5) = 16, an optimal configuration is
%e A264041    ///.\
%e A264041    ../.\
%e A264041    \\.\\
%e A264041    \./..
%e A264041    \.///
%e A264041 For more examples, see the link "Optimal configurations for n=1..32".
%Y A264041 Cf. A000217 (triangular numbers), A260708 (the same?), A264938 (first bisection?), A264667.
%Y A264041 Cf. A299017 (intersection with A000217).
%K A264041 nonn,more,nice
%O A264041 1,2
%A A264041 _Gabriella Pinter_, Stephen Wasielewski, Peter Boyland, Ivan Roth, G. Christopher Hruska, Jeb Willenbring, Oct 22 2015
%E A264041 Additional comments and terms a(9)-a(26) from _Robert Israel_, Nov 01 2015
%E A264041 This entry is the result of merging two independent submissions, merged by _N. J. A. Sloane_, Nov 11 2015
%E A264041 Cases n=27, n=31 proved using SCIP ILP solver by _Aleksandr V. Novozhilov_, Apr 01 2025