A264048 Triangle read by rows: T(n,k) (n>=1, k>=1) is the number of integer partitions lambda of n such that there are k compositions mu such that the Gelfand-Tsetlin polytope for lambda and mu is integral.
1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1
Offset: 1
Examples
Triangle begins: 1, 1,1, 1,0,1,1, 1,0,0,1,1,0,1,1, 1,0,0,0,1,0,1,0,0,0,1,1,0,0,1,1, 1,0,0,0,0,1,0,0,0,0,1,1,0,0,0,1,1,0,0,0,0,0,1,0,0,2,0,0,0,0,1,1, ...
Links
- FindStat - Combinatorial Statistic Finder, Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight.
- J. De Loera and T. B. McAllister, Vertices of Gelfand-Tsetlin polytopes, arXiv:math/0309329 [math.CO], 2003, MathSciNet:2096742.
Comments