cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264049 Triangle read by rows: T(n,k) (n>=1, k>=1) is the number of integer partitions lambda of n such that there are k partitions mu such that the Gelfand-Tsetlin polytope for lambda and mu is integral.

This page as a plain text file.
%I A264049 #8 Nov 25 2015 21:34:59
%S A264049 1,1,1,1,1,1,1,1,1,1,1,1,2,0,2,0,1,1,1,2,1,2,0,1,1,1,0,1,1,1,3,0,2,2,
%T A264049 1,1,1,0,0,1,1,0,1,1,1,3,2,2,2,0,2,0,3,0,0,2,0,0,1,0,1,0,1,0,1,1
%N A264049 Triangle read by rows: T(n,k) (n>=1, k>=1) is the number of integer partitions lambda of n such that there are k partitions mu such that the Gelfand-Tsetlin polytope for lambda and mu is integral.
%C A264049 Row sums give A000041, n >= 1.
%H A264049 FindStat - Combinatorial Statistic Finder, <a href="http://www.findstat.org/StatisticsDatabase/St000208">Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight</a>.
%H A264049 J. De Loera and T. B. McAllister, <a href="http://arxiv.org/abs/math/0309329">Vertices of Gelfand-Tsetlin polytopes</a>, arXiv:math/0309329 [math.CO], 2003, MathSciNet:2096742.
%e A264049 Triangle begins:
%e A264049 1,
%e A264049 1,1,
%e A264049 1,1,1,
%e A264049 1,1,1,1,1,
%e A264049 1,2,0,2,0,1,1,
%e A264049 1,2,1,2,0,1,1,1,0,1,1,
%e A264049 1,3,0,2,2,1,1,1,0,0,1,1,0,1,1,
%e A264049 1,3,2,2,2,0,2,0,3,0,0,2,0,0,1,0,1,0,1,0,1,1,
%e A264049 ...
%Y A264049 Cf. A000041, A264035, A264047, A264048.
%K A264049 nonn,tabf
%O A264049 1,13
%A A264049 _Christian Stump_, Nov 02 2015